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We consider a magnetic moment with an easy axis anisotropy energy, switched by an external field
applied along this axis. Additional small, time-independent bias field is applied perpendicular to the
axis. It is found that the magnet’s switching time is a non-monotonic function of the rate at which
the field is swept from “up” to “down.” Switching time exhibits a minimum at a particular optimal
sweep time. This unusual behavior is explained by the admixture of a ballistic �precessional�
rotation of the moment caused by the perpendicular bias field in the presence of a variable switching
field. We derive analytic expressions for the optimal switching time, and for the entire dependence
of the switching time on the field sweep time. The existence of the optimal field sweep time has
important implications for the optimization of magnetic memory devices. © 2011 American
Institute of Physics. �doi:10.1063/1.3570635�

In conventional magnetic switching by an externally ap-
plied magnetic field the moment performs many revolutions
before switching to the opposite direction. While being much
slower than the ballistic �precessional� switching1–3 which is
tested experimentally but not yet realized in applications,
conventional switching is used for magnetic recording in
hard disk drives and other devices. The speed at which the
moments of magnetic bits can be switched between the two
easy directions has obvious implications for the technology
performance, setting the limit for the information writing
rate. Here we study the dependence of the conventional mag-
netic switching time �m on the reversal time of the writing
head field. If the field is swept from “up” to “down” in a time
�h, the switching time will be a function �m��h�. It would
seem natural to assume that �m decreases with decreasing �h

and the fastest switching is realized by an instantaneous flip
of the field with �h=0. However, it was found numerically by
one of the authors4 that in the presence of a small perpen-
dicular bias field the function �m��h� is not monotonic and
has a minimum at an optimal sweep time �h

�. Decreasing �h

below the optimal value would be counterproductive in
terms of the technology performance. In this paper we pro-
vide analytic approximations for the function �m��h� and the
optimal field sweep time �h

�. We find that the nonmonotonic
behavior of �m��h� is a result of the admixture of a “ballistic”
�or “precessional”� switching induced by the perpendicular
bias field. Ballistic contribution is normally quenched by the
anisotropy, but here it is restored by the time-dependence of
the field during the rise time of the applied step. The effect
considered here is different from the decrease in the switch-
ing time5 predicted for switching below the Stoner–
Wholfarth limit.6,7 The latter consists of the �m dependence
on the amplitude of the field step with an instantaneous rise
time, while in our case the finite rise time is essential. Con-
ventional switching considered here is achieved by a field
step and does not require precisely timed pulses of finite

duration needed for a truly ballistic switching.1–3 Also, the
required field magnitude is much smaller than in the ballistic
case.

Magnetic particles of nanometer size are
single-domain1,8 and can be described by the moment M
=M0n, where n is a unit vector. We consider a particle with
an easy axis ẑ and anisotropy energy Ea=−�1 /2�Knz

2. The
switching field H=H�t�ẑ is directed along the easy axis. For
large enough field magnitudes, �H��K /M0, only one equi-
librium direction of M is stable. A field applied exactly along
the axis leads to a magnetization switch only when some
fluctuations of M are present. Following Ref. 4 we introduce
a small constant perpendicular bias field H�=H�x̂, H�

�K /M0 to mimic the required fluctuations.
The dynamics of the moment are governed by the

Landau–Lifshitz–Gilbert �LLG� equation

Ṁ = − �� �E

�M
� M� +

�

M0
�M � Ṁ� ,

where � is the gyromagnetic ratio, E=Ea− �H+H�� ·M is
the total magnetic energy, and ��1 is the Gilbert damping
constant. The field sweep is assumed to be linear in time and
given by the expressions H�t�=+H0 for t�0, H�t�=H0�1
−2t /�h� for 0� t��h, and H�t�=−H0 for t��h. As the field
is swept from positive to negative values, the up-equilibrium
disappears and the magnetic moment starts to move toward
the down-equilibrium along a spiral trajectory. The final ap-
proach to the down-equilibrium in exponential. To define a
finite switching time we have to introduce a provisional cut-
off angle 	sw and calculate the time it takes to reach it. The
extra time needed to cover the remaining distance does not
depend on �h because that part of the motion happens at a
constant field H=−H0. In accord with Refs. 4–7 we choose
	sw=
 /2.

The LLG equation can be easily solved numerically and
the switching time dependence �m��h� can be obtained. Fig-
ure 1 shows the results of such modeling for a particular
parameter set. The minimum of �m is clearly observed.a�Electronic mail: yar@physics.sc.edu.
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We have derived an approximate analytic expression for
the switching time. Denoting h0=�H0, h�=�H�, and �0
=�K /M0 we find

�m 	
3h0 + �0

4h0
�h +

ln�h0/
h�
2 �h�

2��h0 − �0�
+ �R, �1�

where �R is a part independent of �h and h�

�R =
1

2�

 1

h0 − �0
ln�2�h0 − �0�

h0
�

−
1

h0 + �0
ln�h0 − �0

2h0
�
 .

Formula �1� is the first main result of our paper. As one can
see in Fig. 1, it reproduces the function �m��h� quite well.

Approximation �1� requires small h� and �. For a given
h� it is valid in the interval of field sweep times

h0

�h0 − �0�2 � �h � �h
�+�, �2�

where �h
�+� is a solution of

��h

h0
e−��h�h0 − �0�2/4h0 =

1

h�

.

The optimal sweep time �h
� is determined from ��m /��h=0.

We get an expression

�h
� =

1

2��h0 − �0�
4h0

3h0 + �0
. �3�

This formula is our second main result. Note that �h
� is inde-

pendent of the bias field. The minimal switching time �m��h
��

itself depends on h�, which is quite natural since the initial
deviation from the easy axis is controlled by h�. We have
also calculated the switching time drop

�m�0� − �m��h
�� =

ln�
�h0 − �0��h0 + �0�2

2�h0
2�3h0 + �0� � − 1

2��h0 − �0�
.

between the instant and the optimal field sweeps. The drop is
independent of the bias field as long as approximation �1� is
valid.

Formula �3� is valid when �h
� falls into the interval �2�.

Our calculations show that this is guaranteed for

h�
2

h0�h0 − �0�
� � �

h0 − �0

2h0
. �4�

These inequalities place a more stringent constraint on the
Gilbert damping than the simple ��1.

Figure 2 compares numerically calculated switching
times with our analytic formula �1�. When inequalities �4�
are well satisfied, the quality of approximation is very good.
As one approaches the limits of the approximation’s validity
by, e.g., increasing �, the errors grow larger.

Figure 3 shows the dependence of the optimal field
sweep time �h

� on the system parameters. The correspondence
with formula �3� is generally good, although some visible
deviations exist. The accuracy of the determination of �h

� is
lowered by a flat shape of the �m��h� minimum. The shallow
minimum, however, also lowers the practical importance of
precise determination of �h

�.
In general, the analytic expression can approximate the

�m��h� dependence up to a 10% accuracy in a surprisingly
wide range of parameters. Such accuracy is certainly suffi-
cient for the estimates related to the device design.

We now discuss the physical reason for the minimum of
the function �m��h�. The bias field has two roles in the
switching process. First, it provides the initial deviation from
the easy axis. Second, it alters the equations of motion for
M�t�. The derivation of Eqs. �1� and �3�, which will be de-
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FIG. 1. Switching time �m as a function of field sweep time �h. Here �
=0.01, h0=3.5�0, h�=0.001�0. The solid line is given by the analytical
expression �1�.
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FIG. 2. Dependencies �m��h� calculated for h0=2.2�0,
h�=0.001�0, and variable � indicated on each panel.
As � increases, the theoretical fit gets poorer due to the
violation of the strong inequality �4�.
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tailed in our forthcoming paper, shows that the second con-
tribution is dominant. Recall now that in the absence of an-
isotropy and other fields the torque H��M due to the bias
field would rotate vector M from +ẑ to −ẑ along a meridian
of the sphere �M�=M0 �dashed line in Fig. 4�, in a ballistic
�precessional� fashion. In our case a weak bias field is ap-
plied on top of the strong uniaxial anisotropy and switching
field, which together induce a fast orbital motion of vector
M�t� along the parallel circles �line C in Fig. 4�. The bias
field still attempts to move M along the meridians, but now
its action has to be averaged over the orbital period. As il-
lustrated in Fig. 4, in constant fields H= �H0ẑ averaging
gives zero due to the cancellation of the contributions from
the diametrically opposed infinitesimal intervals dl1 and dl2
of equal lengths. This way ballistic contribution of the bias
field is quenched. However, the contribution of H� does not
average to zero for a variable switching field H�t�. In this
case the velocity of M changes along the orbit, the times

spent in the intervals dl1 and dl2 are different, and the con-
tributions of the two do not cancel each other. We conclude
that in the presence of a time dependent external field H�t�
ballistic contribution of the perpendicular bias field is recov-
ered. Moreover, this contribution helps to move vector M
from +ẑ to −ẑ and is thus responsible for the initial decrease
in �m. As the sweep time grows larger, the change in the
orbital velocity during the precession period decreases and
the ballistic contribution averages out progressively better.
The helping effect of ballistic switching is lost and �m starts
to increase as it normally would.

Ballistic contribution to switching can be also viewed as
a phenomenon complimentary to the magnetic resonance and
rf-assisted switching,8–10 where H is constant but H��t� is
time-dependent. There the average contribution of the bias
field on an orbit does not vanish due to the time dependence
of H�. The non-vanishing contribution, regardless of its ori-
gin, assists the switching and makes it faster.

Our analytical results provide a convenient approxima-
tion for the optimal field sweep time, an important parameter
in the device design. They can be used as a starting point for
the investigations of the switching time in granular media,
where each grain can be modeled by a single moment and
bias fields are produced by the other grains or by the spread
of grain orientations.
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FIG. 3. Numeric �points� and approximate analytical
�solid lines� dependencies of the optimal field sweep
time �h

� on the system parameters: �a� fixed � and h�,
�b� fixed h0 /�0 and h�, �c� fixed h0 /�0 and �. When
not varied, the parameter values are h0=2.2�0, �
=0.01, h�=0.005.
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FIG. 4. Average ballistic contribution of the bias field. Vector M�t� orbits
around a parallel circle C on a sphere �M�=M0. The torque due to H�

pushes M along the meridians of the sphere. In constant switching field H
the torque contributions from the diametrically opposed elements dl1 and dl2

cancel each other. For variable H�t� such a cancellation does not happen
because M spends unequal amounts of time on dl1 and dl2.
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