
AG955-07E

Thumbwheel Programmer

for SM12x-Series Smart Sensors

SB-00-092

NVE Corporation (800) 467-7141 sensor-apps@nve.com www.nve.com

Overview

This self-contained module programs the SM12x digital output (“DOUT”)

threshold and hysteresis without a computer or customer microcontroller. The

board has an I²C master microcontroller to connect to the sensor.

A custom TDFN-6 socket accommodates the SM12x sensor. Miniature rotary

thumbwheel switches set the threshold and hysteresis, and a pushbutton allows

rezeroing the sensor. There are three digits of resolution for the threshold and

two for hysteresis. The module is powered by a small wall-mounted power

supply (included).

Jumpers allow the board to be used as a self-contained programmer, a

programmer for a breakout board such as an NVE AG958-07E, or the socket

can be used to connect a sensor to the customer’s own electronics.

This Module Includes

• A 2.5 by 2.5-inch (64 x 64 mm) circuit board with:

– A 2.5 x 2.5 mm TDFN6 socket for a SM12x Smart Magnetometer

– A preprogrammed, onboard microcontroller

– Two sets of thumbwheel switches for digital threshold and hysteresis

– Two LEDs indicating the sensor’s output and successful programming

• A 5-volt wall-mount power supply

SM12x Smart Magnetometer Features

• Factory calibrated for sensitivity, offset, and linearity; can be recalibrated

• 1 mT (SM124) or 4 mT (SM125) linear range

• Elegant I²C connections

• Can detect magnets more than 50 mm away

• Digital threshold output

• 7-bit output resolution

• In-plane sensitivity—more usable than Hall effect sensors

• Wide 2.2 to 3.6 V supply range

• Ultraminiature 2.5 mm x 2.5 mm x 0.8 mm TDFN6 package

Visit www.nve.com for complete product specifications.

2

Programmer Operation

⇒ Verify jumpers or a sensor connector are in place.

⇒ Place an SM12x-10E sensor in the socket or

connect the board to an SM12x breakout board

(part number AG958-07E or AG961-07E).

⇒ Connect the five-volt power supply.

⇒ If desired, rezero the sensor by pressing the

“Zero” button with no field present. This

overrides the factory calibration offset.

⇒ The green LED turns off briefly, then on to

indicate successful rezeroing.

⇒ Set the “threshold” and “hysteresis” thumbwheels to the desired values.

Thumbwheel settings are percentages of the sensor’s linear range. So for

example, “50” represents 50% of the linear range, or 0.5 mT for an SM124.

⇒ The threshold can be between 1 and approximately 120%, and hysteresis

from 1 to 99%. A hysteresis setting greater than the threshold invokes

a latching mode.

⇒ Press the “Program” button.

⇒ The green LED turns off, then on to indicate successful programming.

⇒ The green LED will flash for one second if

programming was unsuccessful. Verify the

threshold and hysteresis settings are in the

allowable range and check the sensor seating

in the socket.

⇒ The orange LED on the sensor Digital Output

(“DOUT”) can provide a gross check by

activating the sensor with a magnet while the

sensor is still in the socket.

⇒ Remove the sensor from the socket or disconnect

the breakout board and put it to work.

Visit nve.com or YouTube/NveCorporation for a demonstration.

3

Thumbwheels and successful
programming LED.

DOUT indication with a
magnetic field applied.

4

LEDs

There are two LEDs:
• Digital Output (orange LED)

- Connected to the sensor’s digital output (DOUT), the LED turns on
when the output is HIGH.

• Status (green LED)
- Flashes on power-up to indicate a successful programmer board power-on

reset and microcontroller boot.

- Solid ON indicates successful rezeroing or programming, verified by
reading the parameters back from the sensor.

- Flashes for one second if programming was unsuccessful.

Thumbwheel Switches

There are two sets of thumbwheel switches on the board:
• Threshold

Sets the field at which the output turns on.
The range is 1 to approximately 120%.

• Hysteresis
Sets the hysteresis of the threshold. The range is 1 to 99%. A hysteresis
setting greater than the threshold invokes a latching mode.

Settings are percentages of the sensor’s linear range. For example, “50”
represents 50% of the linear range (0.5 mT for an SM124; 2 mT for an SM125).

Buttons

There are two pushbutton switches:
• Zero

Overrides the factory calibration offset by zeroing the magnetometer.

• Program
Programs the Threshold and Hysteresis values set on the thumbwheels.

This board uses the SM12x “default” comparator mode (it does not support the

“Window Comparator” mode). DOUT goes HIGH when the sensor field

exceeds a threshold (THRSH; also known as THRSH_L), then LOW when the

field magnitude drops below the threshold minus hysteresis as illustrated below:

Nonvolatile

Threshold and hysteresis parameters are stored in the sensor’s nonvolatile

memory, and can be set for life if desired.

Continuously Updated

DOUT is continuously updated at high speed and runs independently of the

I²C interface.

Latching Mode

If Hysteresis is set to be greater than Threshold, DOUT will latch ON the first

time the field exceeds the threshold. Once latched, the output can be reset by

cycling the sensor power. The latching mode is useful for fault detection and

safety shutoffs.

The Threshold and Hysteresis Parameters

5

Digital
Output

HYST

THRSH

Field
Magnitude

6

In-Plane Sensitivity

The SM12x Digital Output (“DOUT”) turns on and off in response to magnetic

fields. Unlike Hall effect or other sensors, the direction of sensitivity is in the

plane of the package, which is more convenient.

The diagram below shows the magnet orientation to activate the sensor:

Omnipolar

SM12x magnetometers are “omnipolar,” meaning the output turns ON with a

field of either magnetic polarity. This simplifies system design since magnet

polarity is often unknown.

Convenient Direction of Magnetic Sensitivity

Magnet-to-Sensor Distance

Typical operating distances are illustrated in this graph for an inexpensive 6

mm diameter by 4 mm thick ferrite disk magnet:

Larger and stronger magnets allow farther operate and release distances. For

more calculations, use our axial disc magnetic field versus distance Web

application at:

www.nve.com/spec/calculators.php#tabs-Axial-Disc-Magnet-Field

Responsibilities That Come With High Sensitivity

With low thresholds, care should be taken to account for the earth’s magnetic

field, which is typically about 0.05 mT.

For low-field applications we recommend ultrasmall bypass capacitors such as

0201 (0603 metric) or 01005 (0402 metric), since they contain less

ferromagnetic material than larger components.

Also, materials with remnant fields (permanent magnetization) such as steel

should be avoided near the sensor. This board, for example, uses brass rather

than steel screws and nuts to attach the socket to the circuit board. Brass,

nylon, or austenitic stainless steel (such as 18-8), are recommended for

hardware near the sensor.

7

High Magnetic Sensitivity

5

F
ie

ld
(m

T
)

0

0 10 20 30 40

Distance (mm)

4

3

22

1
SM124 linear range

SM125 linear range

Schematic Diagram

GND

C3

C1

C2

VCC

1 F

0.1 F

SDA

SCL

UCAP

SM124-10E

(U1)

Smart
Magnetometer

ATmega
16U2-AU

Microcontroller
(U2)

VCC AVCC

VSS

1VBUS
D-
D+

GND

PD0

PD1

3.3V

UDP
UDM
UVCC

UVSS

R3
3.01
K

DOUT

1
I2CADDR

5V

TPD2E
001 (D2)

D1

2

6

5

4

3

6.49
K

R2

PC7

D3
PROG-

RAMMED

PB5
PB6
PB7

PB4
2
4
8

1

Thrsh x100 Thrsh x10 Thrsh x1 Hyst x10 Hyst x1

PD3
PD2
PD7
PD6

PD4 c

2
4
8

1

c

2
4
8

1

c

2
4
8

1

c

2
4
8

1

c
Diodes:
10x
BAS21

PR
O

G
RA

M

PC6

AG955-07E: Self-contained SM124 Programmer

PD5

ZE
RO

GND

J2-6

J2-1
J2-5

J2-2

J2-4

J2-3

pin 6
pin 5
pin 4
pin 3
pin 2
pin 1

J2 Detail

}From sensor
to programmer
circuitry}To

socket

10 F

pin 6
pin 5
pin 4
pin 3
pin 2
pin 1

8 - 9

10

Test Points

GND

DOUT

3.3V output

Board Layout

Power
Connector
(USB)

Thumbwheel Switches

Programming
Button

Sensor Socket

To
Programmer
Circuitry

Zeroing
Button

“Programmed”
LED

DOUT
Indicator
LED

To
Sensor
Socket

Bill of Materials

11

Part Number Manufacturer

Reference

Designator Description

885012207016 Wurth Electronics Inc. C2 CAP CER 0.1UF 10V X7R 0805

LMK107BBJ106MALT Taiyo Yuden CAP CER 10UF 10V X5R 0603

APT3216LSECK/J4-PRV Kingbright D1 LED ORANGE CLEAR CH IP SMD

APT3216SGC Kingbright D3 LED GREEN CLEAR CHIP SMD

TPD2E001DRLR Texas Instruments D2 TVS DIODE 5.5V SOT5

BAS21DW5T1G ON Semiconductor D4-D13 DIODE ARRAY GP 250V 200MA SOT353

M 1% 1/8W 0805RMCF0805FT6K49 Stackpole Electronics R2 RES 6.49K OH

1% 1/8W 0805

FR01SR10P NKK Switches S3-S7 SWITCH ROTARY DIP BCD 100 MA 5V

1825910-6 TE Connectivity ALCO S1, S2 SWITCH TACTILE SPST-NO 0.05A 24V

TSW-106-14-T- D Samtec Inc. J2 CONN HEADER 12POS .100" DUAL TIN

QPC02SXGN-RC Sullins Connector J2 (6) CONN JUMPER SHORTING .100" GOLD

5005 Keystone Electronics J3 PC TEST POINT COMPACT RED

5006 Keystone Electronics J4 PC TEST POINT COMPACT BLACK

5008 Keystone Electronics J5 PC TEST POINT COMPACT ORANGE

N/A Custom U1 TDFN6 SOCKET FOR SM124-10E

690-005-299-043 EDAC Inc. J1 CONN RCPT USB2.0 MINI B SMD R/A

RMCF0805FT3K01 Stackpole Electronics R3 RES 3.01K OHM

ATMEGA16U2-AUR Microchip Technology U2 IC MCU 8BIT 16KB FLASH 32TQFP

C1, C3GRM21BR71C105KA01L Murata Electronics CAP CER 1UF 16V X7R 0805

C1

13

Firmware

return WINDOW_LOT_SHIFT;
}

int get_address(){
for(iterator = 0; iterator < ((0xFF >> 1) + 1); iterator++)
{

if(i2c_start((iterator << 1) | I2C_WRITE)) {
g_i2c_addr=iterator;
i2c_stop();
return g_i2c_addr;

}
i2c_stop();

}
return -1;

}

int main(void) {
char lot_shift;
unsigned char passed;
unsigned char read_buffer;
unsigned char offset_buffer;
unsigned char original_offset_buffer;
unsigned char new_offset_buffer;
unsigned char new_threshold;
unsigned char new_hysteresis;

setup();
while (1) {
if(PIND & 0b00100000 ^ zeroSwitch) { //"Zero" button changed

if(zeroSwitch) {
passed = 0;

PORTC &= 0b01111111; //Turn off LED pending verification
_delay_ms(200); //Just to see the LED turn off when it is working

if(get_address()==-1) goto ZERO_EXIT; // get address
lot_shift = get_sensor_lot_shift(); // get lot
if(lot_shift == BAD_LOT_CODE) goto ZERO_EXIT;
// store original offset in case it needs to be reverted
if(read_location(LOC_OFF_ORIG + lot_shift, &original_offset_buffer)) goto ZERO_EXIT
if(read_location(LOC_FIELD, &read_buffer)) goto ZERO_EXIT; // read the field
while(field_buffer == 0){ // if the field is 0 then it may have been truncated; increase the offset until the reading is positive

if(read_location(LOC_OFF_ORIG + lot_shift, &offset_buffer)) goto ZERO_EXIT; // read the offset
if((signed char)offset_buffer > 100) { // if its unreasonably large something went wrong

write_location(LOC_OFF_ORIG + lot_shift, original_offset_buffer); //reset back to original
goto ZERO_EXIT;

}
if(write_location(LOC_OFF_ORIG + lot_shift, offset_buffer + 10)) goto ZERO_EXIT;// write shifted offset
if(read_location(LOC_FIELD, &field_buffer)) goto ZERO_EXIT;// read field again

}
if(read_location(LOC_OFF_ORIG + lot_shift, &offset_buffer)) goto ZERO_EXIT;// read the offset
new_offset_buffer = (signed char) offset_buffer - field_buffer; // change the offset by the reading
if(write_location(LOC_OFF_ORIG + lot_shift, new_offset_buffer)) goto ZERO_EXIT;// write it
if(read_location(LOC_OFF_ORIG + lot_shift, &offset_buffer)) goto ZERO_EXIT;
if(offset_buffer != new_offset_buffer) goto ZERO_EXIT;// make sure its the same
passed = 1;

ZERO_EXIT:
if(passed) { //Turn on LED if passed

PORTC |=0b10000000;
}
else { // Flash LED if failed

PORTC |=0b10000000;
_delay_ms(1000);
PORTC &= 0b01111111;

}
}
zeroSwitch ^= 0b00100000; //Update switch

}
if((PINC & 0b01000000 ^ pgmSwitch)) { //"Program" button changed

if(pgmSwitch) { //Button pressed (not released)
passed = 0;
PORTC &= 0b01111111; //Turn off LED pending verification
_delay_ms(200); //Just to see the LED turn off when it is working
if(get_address()==-1) goto PROGRAM_EXIT; // get address
lot_shift = get_sensor_lot_shift(); // get lot
if(lot_shift == BAD_LOT_CODE) goto PROGRAM_EXIT;// if the function failed

threshold=0; hysteresis=0; //Prepare to read thumbwheels
PORTD = (PORTD | 0b11011100) & 0xFB; //Set PD2 low; other thumbwheel selections high
for(digit=1; digit<999; digit*=10) { //Step through the three threshold digit thumbwheels

_delay_us(1); //Let input stabilize
threshold += ((PINB >> 4)^0xF)*digit; //Read each digit
PORTD = ((PORTD << 1) & 0x1C) | 4 | (PORTD & 0xE3); //Select next thumbwheel

}
PORTD = (PORTD | 0b11011100) & 0xBF; //Set PD6 low; other thumbwheel selections high
for(digit=1; digit<99; digit*=10) { //Step through the two hysteresis thumbwheels

_delay_us(1); //Let input stabilize
hysteresis += ((PINB >> 4)^0xF)*digit; //Read and invert digits
PORTD = (PORTD | 0b11011100) & 0x7F; //Set PD7 low; other thumbwheel selections high

}

if(write_location(LOC_THRESHOLD, threshold)) goto PROGRAM_EXIT;
if(write_location(LOC_HYST_ORIG + lot_shift, hysteresis)) goto PROGRAM_EXIT;
if(read_location(LOC_THRESHOLD, &new_threshold)) goto PROGRAM_EXIT;
if(read_location(LOC_HYST_ORIG + lot_shift, &new_hysteresis)) goto PROGRAM_EXIT;
if((threshold == new_threshold) && (hysteresis == new_hysteresis)) passed = 1;

PROGRAM_EXIT:
if(passed) { //Turn on LED if verified

PORTC |=0b10000000;
}
else { // Flash LED if failed

PORTC |=0b10000000;
_delay_ms(1000);
PORTC &= 0b01111111;

}
}
pgmSwitch ^= 0b01000000; //Update switch state

}
}

}

E-mail us for the firmware:

sensor-apps@nve.com

12

Programmer

/* SM124 Thumbwheel Programmer
* For SM124 version with widow comparator (lot codes 1932xx and higher)
*/

#define I2C_TIMEOUT 1000
#define I2C_PULLUP 1
#define SDA_PORT PORTD
#define SDA_PIN 1 // = A4
#define SCL_PORT PORTD
#define SCL_PIN 0 // = A5
unsigned char MEMLOC = 0x0A;
#define ADDRLEN 1 // address length, usually 1 or 2 bytes
#define I2C_WRITE 0
#define I2C_READ 1
#define F_CPU 8000000UL

#include <avr/io.h>
#include "SoftI2CMaster.h"
#include <util/delay.h>

#define LOC_HYST_ORIG 0x21
#define LOC_OFFSET_ORIG 0x21
#define LOC_FIELD 0x00
#define LOC_THRESHOLD 0x20

#define ORIGINAL_LOT_SHIFT 0
#define WINDOW_LOT_SHIFT 1
#define BAD_LOT_CODE -1

double holder;
unsigned char field=0, uncal=0;
unsigned char threshold=0;
unsigned char hysteresis=0;
int zeroSwitch= 0b00100000; //"Zero" button previous state
int pgmSwitch = 0b01000000; //"Program" button previous state
int digit=1; //Digit counter
int g_i2c_addr,iterator;

void setup() {
DDRC = 0b10000000; //Set PC7 as output for green LED (indicates successful programming)
DDRB = 0b00001111; //Set PB4-PB7 as inputs (for thumbwheels)
PORTB = 0b11110000; //Enable PB4-PB7 pullups
DDRD = 0b11011111; //Set PD2-PD4; PD6-PD7 as outputs for thumbwheel selection (low true)
DDRD = 0b11011111; //Set PD5 as input for "Zero" button
PORTD = 0b00100011; //Enable PD5 pullup
DDRC = 0b10111111; //Set PC6 as input for "Program" button
PORTC = 0b01000000; //Enable PC6 pullup
//Flash the green LED to indicate successful bootup
for(digit=1; digit<6; digit++) { //Toggle LED

_delay_ms(200);
PORTC ^= 0b10000000;

}
_delay_ms(200);
i2c_init();

}

int read_location(unsigned char location, unsigned char * value) {
unsigned char buffer; unsigned int attempts = 0;
while(!i2c_start((g_i2c_addr << 1) | I2C_WRITE)) { // write the location

if(attempts++ > 100) {i2c_stop();return -1;}
i2c_stop();

}
i2c_write(location);
i2c_stop();
attempts = 0;
while(!i2c_start((g_i2c_addr << 1) | I2C_READ)) { // read from the location

if(attempts++ > 100) {i2c_stop();return -1;}
i2c_stop();

}
buffer = i2c_read(1);
i2c_stop();
*value = buffer;
return 0;

}

int write_location(unsigned char location, unsigned char value) {
unsigned int attempts = 0;
while(!i2c_start((g_i2c_addr << 1) | I2C_WRITE)) {

if(attempts++ > 100) {i2c_stop();return -1;}
i2c_stop();

}
i2c_write(location);
i2c_write(value);
i2c_stop();
_delay_ms(20);
return 0;

}

char get_sensor_lot_shift(void) {
unsigned char l1,l2,l3,l4,l5,l6;
unsigned long long total;

if(read_location(0x80, &l1)) return BAD_LOT_CODE;
if(read_location(0x81, &l2)) return BAD_LOT_CODE;
if(read_location(0x82, &l3)) return BAD_LOT_CODE;
if(read_location(0x83, &l4)) return BAD_LOT_CODE;
if(read_location(0x84, &l5)) return BAD_LOT_CODE;
if(read_location(0x85, &l6)) return BAD_LOT_CODE;

total = ((unsigned long long) l1 << (5 * 8)) +
((unsigned long long) l2 << (4 * 8)) +
((unsigned long long) l3 << (3 * 8)) +
((unsigned long long) l4 << (2 * 8)) +
((unsigned long long) l5 << (1 * 8)) +
((unsigned long long) l6 << (0 * 8));

if(total >= 0x313933323030)
return WINDOW_LOT_SHIFT;

else
return ORIGINAL_LOT_SHIFT;

14

Initialize
(blinking LED)

�Zero� or �Program�
button pressed?

Y

N

Read threshold�
thumbwheels

Join I2C bus
as Master

Point to
hyst. address

Set threshold

Point to
thresh. address

Set hysteresis

Read hysteresis
thumbwheels

Turn on LED

Read threshold
and hysteresis

Programmed
parameters
verified?

N

Zero Program

Join I2C bus
as Master

Point to
offset address

Read sensor

Point to sensor
output address

Set offset to
sensor reading

Read offset

Programmer Flowchart

15

• The board doesn’t turn on (no LED activity).

- Check the power supply connection.

• The green verification LED doesn’t turn on after programming.

- Verify the threshold and hysteresis settings are in the allowable range.

- Check the sensor seating in the socket.

- Verify that all jumpers to the socket or a connector to a sensor is in place.

- Reboot the microcontroller by cycling the power. The sensor should be

in the socket when power is applied so the board can establish

communications with the sensor.

• Sensor threshold output never turns on.

- Verify the threshold settings is in the allowable range

(1 to 120 for the threshold and 1 to 99 for hysteresis). The sensor may not

reach thresholds that are significantly beyond the 0 to 100 linear range.

- Verify the hysteresis is set to less than the threshold.

- Verify that all jumpers are in place.

• Sensor threshold output never turns off.

- Verify the threshold and hysteresis settings are in the allowable range.

- Verify the hysteresis is set less than the threshold (more hysteresis than the

threshold will cause the output to latch on).

- If the latching mode is being invoked (hysteresis > threshold),

the sensor power must be cycled to reset its output.

- For low thresholds (less than approximately 0.5 mT), verify there are no

stray magnetic fields, ensure there are no remnant fields from sockets or

other fixturing, and change the orientation for avoid a contribution from the

earth’s magnetic field.

In Case of Difficulty

We’re here to help: sensor-apps@nve.com

Limited Warranty and Liability

Information in this document is believed to be accurate and reliable. However, NVE does not give

any representations or warranties, expressed or implied, as to the accuracy or completeness of such

information and shall have no liability for the consequences of use of such information. In no event

shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including,

without limitation, lost profits, lost savings, business interruption, costs related to the removal or

replacement of any products or rework charges) whether or not such damages are based on tort

(including negligence), warranty, breach of contract or any other legal theory.

Right to Make Changes

NVE reserves the right to make changes to information published in this document including, without

limitation, specifications and product descriptions at any time and without notice.

Use in Life-Critical or Safety-Critical Applications

Unless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or

equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and

such inclusion or use is at the customer’s own risk. Should the customer use NVE products for such

application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless

against all claims and damages.

Applications

Applications described in this document are illustrative only. NVE makes no representation or warranty

that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NVE

products, and NVE accepts no liability for any assistance with applications or customer product design.

It is customer’s sole responsibility to determine whether the NVE product is suitable and fit for the

customer’s applications and products planned, as well as for the planned application and use of

customer’s third party customers. Customers should provide appropriate design and operating

safeguards to minimize the risks associated with their applications and products. NVE does not accept

any liability related to any default, damage, costs or problem which is based on any weakness or

default in the customer’s applications or products, or the application or use by customer’s third party

customers. The customer is responsible for all necessary testing for the customer’s applications and

products using NVE products in order to avoid a default of the applications and the products or of the

application or use by customer’s third party customers. NVE accepts no liability in this respect.

An ISO 9001 Certified Company

NVE Corporation

11409 Valley View Road

Eden Prairie, MN 55344-3617

©NVE Corporation

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written

consent of the copyright owner.

Manual No.: SB-00-092 Rev. B; 11/25/19

