NVE—

NVE CORPORATION

AG935-07E
“Blinky” Angle Sensor Demo Board

SB-00-072

NVE Corporation (800) 467-7141 sensor-apps @nve.com www.nve.com

Kit Overview

Demonstration Kit Includes

* A 5-inch by 5-inch circuit board with:
— An AAT003 Angle Sensor
— 60 multicolor smart LEDs (6° spacing) indicate rotation angle
— An onboard preprogrammed ATtiny microcontroller
— PWM angle output (8-bit resolution)
— Factory calibrated; optional field calibration

* Split-pole magnet

* Magnet locating fixture

* 5-volt wall-mount power supply module

AATO003-10E Angle Sensor Features
» Tunneling Magnetoresistance (TMR) technology
» Zeroto 5.5V supply range
* 40 kQ typical bridge resistance for low power
» 200 mV/V typica output signal
* 1.5% maximum nonsinusoidality error
» Wide sensor-magnet airgap tolerance
» Sine and cosine outputs for direction detection
 Ultraminiature 2.5 mm x 2.5 mm x 0.8 mm TDFNG6 package

AAT-Series Sensor Applications
» Rotary encoders
» Motor shaft position sensors
* |Internet-of-Things sensor nodes

Available AAT-Series Angle Sensor s

Part Typ. Output Required Typ. Device
Number Configuration (ea. output; p-p) Field Resistance
AAT001-10E Half-bridge 200 mV/V 30 Oe 1.25MQ
AAT003-10E Half-bridge 200 mV/V 30 Oe 40 KQ
AAT006-10E Half-bridge 200 mV/V 15 Oe 1.5MQ
AAT009-10E Half-bridge 200 mV/V 30 Oe 6 MQ
AAT101-10E Full-bridge 400 mV/V 30 Oe 625 kQ

Visit www.nve.com for complete product specifications.

Demonstration Board Operation

= Connect the five-volt power supply.
= Place the magnet in the Plexiglas pocket.

= Rotate the magnet and observe the LEDs.
Red LEDs indicate clockwise rotation; green is
for counterclockwise; and white is for stopped.

h!
£

= The SIN and COS raw output test points can
be measured with a voltmeter or oscilloscope.

= The calibrated PWM output can be measured
with avoltmeter (0 to 360° = 0to V).

= The board is factory calibrated, but it can be
recalibrated as follows:
— Install ajumper on the “calibrate” header.

:_'

ol
o

— Cycle the power.

— Reciprocating blue “arrows’ indicate the
board is waiting for the magnet to turn.

— Rotate the magnet clockwise and
counterclockwise for about five seconds
(be sure to cover at least the entire 360°
of rotation).

— Four colored LEDs (red, green, yellow,
and blue) will light as parameters are
acquired for each quadrant.

— New calibration constants are stored in
the microcontroller’'s EEPROM, and the
board will begin operating normally using
the new constants.

— The calibrate jumper can be removed to
bypass the calibration routine on
subsequent power-ups.

Cdlibration.

Visit nve.com or YouTube/NveCor poration for demonstrations.

Sensor Principles of Operation

The heart of AAT sensorsiis arrays of four unique Tunneling Magnetoresistance
(TMR) elements, one in each quadrant. TMR technology enables low power
and miniaturization, making the sensors ideal for battery operation.

In atypica configuration, an external magnet provides a saturating magnetic
field in the plane of the sensor, asillustrated below for a bar magnet and a
diametrically-magnetized disk magnet:

The sensor contains four sensing resistors at 90 degree intervals. The resistors
are connected as two half-bridges, providing the sine and cosine voltage
outputs. For each half bridge, the resistance of one element increases and the
other decreases as the field rotates. Thus the bridge resistance, device
resistance, and output impedances remain constant with rotation.

Outputs are ratiometric with the supply, and inherently resistive for easy
filtering.

Angle Calculation Algorithms

An obvious way to calculate the angle is the inverse sine or cosine of either
output as shown in the pseudocode below, but such calculations depend on the
particular sensitivity of each part:

Angle = asin(float(AnalogRead(3)-512)/200);
[not very accurate]

Since it uses the ratio of the sensor outputs, arctangent provides more accuracy.
Arctangent cancels power supply variations, doesn’'t need scaling, and takes
advantages of the matching of the two sensor outputs:

Angle=atan (float ((AnalogRead(3) -512) /float (AnalogRead (2) -512) ;
[no quadrature]

The single-variable atan only provides angles for half the unit circle, however,
since the operand is positive when sine and cosine are either both positive or
both negative. Quadrature has to be determined separately if needed.

So the calculation used in this evaluation board is based on atwo-variable
arctangent, which provides a full 360-degree angle range and inherent scaling:

int readAngle () {

ADMUX = 3;

AATsin = getADC();

ADMUX = 2;

AATcos = getADC();

return (atan2(float(AATsin-512), float (AATcos-
512)) /pi+1) *30;

}

The function above also converts angular radians from the inverse
trigonometric function to an integer from zero to 59 for the 60 LEDs in the
demonstration.

Calibration and Scaling Algorithms

Calibration is often unnecessary, but to maximize accuracy, this board
implements two-parameter (sensitivity and offset) linear calibration on each of
the two sensor outputs. As shown in the graph below, calibration parameters
are calculated from the minimum and maximum of each output:

2.9 1

2.8 ~
27 4 sin_|
2.6 A

25 to o= e NV m s s p s
2.4 A

2.3 A
2.2 A

21 4

sin_offset

cos_offset
cos_pp

Sensor Outputs (typ. volts)

1.9 LANLL L L L L B L L B L L L L L L L L
0 30 60 QO 120 150 180 210 240 270 300 330 360

Rotation (deg.)

Offset correction parameters use the sensor’s average outputs as shown in this
pseudocode:

AATsin -= (AATsinmax + AATsinmin)/ 2;
AATcos -= (AATcosmax + AATcosmin)/ 2;

Sensitivity is calibrated using the sensor’s peak-to-peak amplitudes over its
rotation, and the parameter scales the sensor outputs:

angle = atan2 (AATsin / (AATsinmax-AATsinmin),
AATcos / (AATcosmax-AATcosmin) ;

Digital Filtering and PWM Output

Digital Filtering

This board implements digital filtering to damp mechanical chatter or electrical
noise. Filtering is usually unnecessary, but this board represents a challenging
noise environment with a combination of noise sources and an inexpensive,
lightly-filtered modular power supply. Board noise sources include high-
current, clocked LEDs and a clocked microcontroller.

There are many digital filtering algorithms; this board uses a simple first-order,
running average algorithm where the value is updated from the old value using
aweighting factor m:

AATfiltered = (1-1/m)*AATfiltered + AATunfiltered/m;

This agorithm has an approximately first-order response:
fo="fs/(2n m)
Where f. isthe cutoff frequency; fisthe samplerate, and misthefilter constant.

Digital filtering is generaly applied to the sensor outputs rather than the
calculated angle because the angle has a discontinuity from 360 to zero degrees.

Since the sensor has resistive outputs, capacitors can also be added to the
outputs for filtering. Since we have a microcontroller, however, digital filtering
is more flexible, lower cost, and lower parts count.

PWM Output
The PWM on this board uses a simple Arduino AnalogWrite function. The
output is rationmetric

with supply, so the Z 0
zeroto Ve g 4l
output range g
corrresponds to = 31
zeroto 360 degrees, as £
shown in the figure S 27
at right. § 14
o
The ATtiny processor 0 r . . . ¥

0 90 180 270 360 450 540 630 720

provides 8 bits of .
Rotation (deg.)

resolution.

Evaluation Board Layout

AG935-06
©ONVE Corporation

WWW.nve.com

o
7
6

AAT-Series

Angle Sensors:
* Precise
* Large signals
* Wide airgaps

o
:
/A
0

4
S/
/
/9):
> !
5
~
.

* Ultralow power

Smart LED
(SK6812; 60 PLCS)

Test Points

c
Microcontroller

(SOIC8 ATtiny)

\ ¢

\\

) 000 . Decoupling capacitors

i] (10 pF; 5 PLCS)

//

0

S
A3

Jumper to invoke
calibration mode
on power-up

to 5V
wall-mount adapter

D Bill of Materials
o OQQ q .[]_ D O o Part Number Manufacturer Qty Description
: 00 TN dejalvidion] Y OO . AATO003-10E NVE Corporation 1 ANGLE SENSOR, 40 KOHM, TDFN6
p’ SN S 12426 NVE Corporation 1 SPLIT-POLE ROUND HORSESHOE MAGNET
O' \ \ \ / / / / “O PSMO03A-050(ID)-R Phihong USA 1 AC/DC WALL MOUNT ADAPTER 5V 3W
AN \ / / ATTINY85-20SU Microchip Technology 1 ICMCU 8BIT 8KB FLASH 8SOIC
Cl WS2811/WS2812B Shenzhen LED Color Opto 60 DIGITAL RGB LED 5050 SMD

LMK107BBJ106 Taiyo Yuden 5 CAP CER 10uF 10V X5R 0603
690-005-299-043 EDAC Inc. 1 CONN MINI USB RCPT RA TYPE B SMD
500x Keystone Electronics 6 TEST POINT PC MINI .040"D
TSW-102-24-T-S Samtec Inc. 1 .025" SQ. TERMINAL STRIPS

Schematic

CL8IMS X 09

Kesry @31 GaAuny 00LYY
14 aNno e
darol I_wm ano | v
1 99 09N[4 Mgy -grvo e | S M M
e a 08d o N —
! J Z0av soo P
“ ! A zad z Tt
I ! I_ €0QV uis G 0y
I — ss NMd e—— 9 m w
L Paz ‘ € SSA Lad
_ adp) ¢nfy, N 29N 1 8 Son ,
noq 7 ‘ c SSp
v Na m

_ n_n_> L 1N

Flowchart

Initialize

Cal. jumper
present?

Display -
animated Multiple sensor

Read sensor “arrow” reads (-5 sec,)

Filter raw i

sensor readings Calculate cal. fo gggfg
\|/ parameters cal. points

Retrieve cal.
parameters

Calculate

angle

Determine motion
and direction

v
Update LED
Array

v

Output PWM

I

Software available on: https://github.com/NveCorporation

Software

/**
AG935 demo board with an AAT@@3 sensor connected to a 60 smart-LED circular array via an
ATtiny85. Code written in Arduino IDE targeted at "Adafruit Trinket (ATtiny85 @ 8 MHz),"
and is portable to other Arduino boards (add delays per comments for faster processors).
Sensor "SIN" output to PB3; "COS" to PB4; array input on PB2; PWM output on PB1
(ratiometric; ©-Vcc = ©-360 deg.). Active low "CALIBRATE" jumper on PBO.

3 bytes RAM/LED ==> 120 of 512 bytes used in an ATtiny85.

Program uses ~5K flash out of 8K (5.4K available with Arduino bootloader).

Source code available on github.com. Rev. 6/12/18
***/
#include <Adafruit_NeoPixel.h> //Use NeoPixel Arduino routines for LEDs for convenience
unsigned char EE_read(unsigned char addr);

void EE_write(unsigned char addr, unsigned char ucData);

int getADC();

unsigned char readAngle();

//60 LEDs on PB2; 800 Khz LEDs:
Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, 2, NEO_GRB + NEO_KHZ800);

int AATsin; //AAT signals

int AATcos;

float sinFiltered = 0.0; //Digitally filtered AAT signals

float cosFiltered = 0.0;

const float pi = 3.14159;

int angle; //Uncalibrated angle (©-59)

int angleOld; //Previous angle

bool dir = @; //Rotation direction (cw = 1; ccw = 0)

unsigned int cycleCounter = ©; //Number of program iterations since angle changed
const int stopCycles = 25; //Sensor cycles stopped before turning off direction colors
const int arrowCycles = 4; //Loop cycles to update arrow (inverse animation speed)
unsigned int arrowPos = @; //Arrow position away from start

char arrowPixel; //Arrow pixel animation position

unsigned char arrowPixelBrightness;

unsigned char i; //Arrow pixel index

char j; //Indicates cw or ccw arrow

const unsigned char brightness = 2; //Brightness (1-8)

const unsigned char m = 2; //Filter constant; Fc=Fsample/(m*2*pi); Fsample=~250/s

//Sensor min and max outputs (actual values determined in calibration routine)
unsigned char AATsinmin = 63; //Defaults to +-65 mV/V min amplitude offset by 128
unsigned char AATsinmax = 193;

unsigned char AATcosmin = 63;

unsigned char AATcosmax = 193;

//Uncalibrated angles where mix and max occur
unsigned char angleSinMin;
unsigned char angleSinMax;
unsigned char angleCosMin;
unsigned char angleCosMax;

//EEPROM address pointers

const unsigned char sin_offset_addr = @; //Sin offset + 128

const unsigned char cos_offset_addr = 1; //Cos offset + 128

const unsigned char sin_pp_addr = 2; //Sin pk-pk amplitude (255 = 250 mV/V max)
const unsigned char cos_pp_addr = 3; //Cos pk-pk amplitude

Software available on: https://github.com/NveCorporation

void setup() {
//Full-speed clock needed for ATtiny to interface to smart LEDs
//Not needed with faster processors

CLKPR = 0x80; //Enable changing the internal clock

CLKPR = @; //Set full speed internal clock

pinMode(@, INPUT); //Active low "CALIBRATE" jumper on PB@
digitalWrite(@, HIGH); //Turn on pull-up

//ADC setup (avoided Aruino routines to save memory)

ADCSRA &= ~(_BV(ADATE) | _BV(ADIE)); //Clear ADC auto trigger and interrupt enable
ADCSRA |= _BV(ADEN); //Enable ADC

strip.begin();

strip.show();

//Read uncalibrated angle
angle = readAngle();
angleOld = angle;

if (!digitalRead(®)) { //Jumper in place; invoke calibration routine
while (angle == angleOld) { //Reciprocating cw/ccw arrows until sensor turns
angleOld = angle;
strip.clear(); //Reset the LED array
for (i = 1; i<30; i++) {
arrowPixel = 45+(15-i)*(1-dir*2); //Arrows centered at LED 45 (12:00)
//Brightness profile simulates an arrow
arrowPixelBrightness = 3@-arrowPos/arrowCycles - ij;
//Arrow length 3
arrowPixelBrightness *= (arrowPixelBrightness > 0)&&(arrowPixelBrightness < 4);
//Cube for nonlinear brightness vs. position; scale
arrowPixelBrightness *= arrowPixelBrightness*arrowPixelBrightness*brightness;
strip.setPixelColor(arrowPixel,®,0,arrowPixelBrightness); //Animated blue arrow
} //Finish setting arrow pixels (add delay here for faster processors)
strip.show();
arrowPos++;
if (arrowPos == arrowCycles*27) {
arrowPos = @; //Wrap arrow position at 11
dir = !dir; } //Reverse arrow
angle = readAngle(); }
//Find sensor output minimums and maximums
for (cycleCounter = 1; cycleCounter < 1500; cycleCounter++) { //1500 loops (~5 sec)
strip.clear(); //Reset the LED array
angle = readAngle();
AATsin -=384; //Subtract minimim outputs to ensure 8-bit (©-256), positive range
AATcos -=384;
if (AATsin < AATsinmin) {
AATsinmin = AATsin;
angleSinMin = angle; }
if (AATsin > AATsinmax) {
AATsinmax = AATsin;
angleSinMax = angle; }
if (AATcos < AATcosmin) {
AATcosmin = AATcos;
angleCosMin = angle; }
if (AATcos > AATcosmax) {
AATcosmax = AATcos;
angleCosMax = angle; }

//Sensor position=White; calibration points in color

strip.setPixelColor(angle, 16*brightness, 16*brightness, 13*brightness);
strip.setPixelColor(angleSinMin, 32*brightness, 32*brightness, 0); //SINmin=Yellow
strip.setPixelColor(angleSinMax, 32*brightness, 0, ©); //SINmax=Red
strip.setPixelColor(angleCosMin, @, @, 32*brightness); //COSmin=Blue
strip.setPixelColor(angleCosMax, @, 32*brightness, ©); //COSmax=Green
strip.show();

//Store calibration parameters
EE_write(sin_offset_addr, (AATsinmax+AATsinmin)/2); //Offsets = average outputs
EE_write(cos_offset_addr, (AATcosmax+AATcosmin)/2);
EE_write(sin_pp_addr, AATsinmax - AATsinmin); //pk-pk amplitudes for calibration
EE_write(cos_pp_addr, AATcosmax - AATcosmin);
} //End CALIBRATE routine
strip.clear();
cycleCounter = stopCycles;
} //End setup

void loop() {
readAngle();

//0ffset correction using EEPROM parameters; add back 384 previously subtracted
AATsin -= EE_read(sin_offset_addr)+384;
AATcos -= EE_read(cos_offset_addr)+384;

//Digital filters--> Fc=Fsample/(m*2*pi); Fsample=~250/s
sinFiltered += (AATsin-sinFiltered)/m;
cosFiltered += (AATcos-cosFiltered)/m;

//Calculate calibrated angle; scale for 15360 = 360 degrees
angle=(atan2(sinFiltered/EE_read(sin_pp_addr),cosFiltered/EE_read(cos_pp_addr))/pi+1)*7679;
analogWrite(1, angle/6@); //Scale ©-255; output PWM on PB1 (Arduino Write for simplicity)
angle = angle/256; //Scale for ©-59 for LED array
if (angle != angleOld) {
dir=(angle>angle0ld)~(abs(angle-angle0ld)>30); //cw=1; ccw=0; XOR fixes 59/@ crossing
strip.clear(); //Clear LEDs; set cw=Red, ccw=Green
strip.setPixelColor(angle, dir*32*brightness, !dir*32*brightness, 0);
angleOld = angle;
cycleCounter = @; //Reset stop counter

if (cycleCounter >= stopCycles) { //Wash out direction colors to white if stopped
strip.setPixelColor(angle, 16*brightness, 16*brightness, 12*brightness);
}
else {
cycleCounter++; //Increment stop counter

strip.show();
} //End main loop (add delay here for faster processors)

/*Functions*/
//EEPROM read
unsigned char EE_read(unsigned char addr) {
while (EECR & (1 << EEPE)); //Check for write in progress
EEAR = addr;
EECR |= (1 << EERE); //Start EEPROM read
return (EEDR);

//EEPROM write
void EE_write(unsigned char addr, unsigned char ucData) {
while (EECR & (1 << EEPE)); //Wait for completion of previous write
EECR = (@ << EEPM1) | (@ << EEPM@); //Set programming mode
EEAR = addr;
EEDR = ucData;
EECR |= (1 << EEMPE); //Write 1 to EEMPE
EECR |= (1 << EEPE); //Start EEPROM write by setting EEPE

//ADC subroutine
int getADC() {
ADCSRA |= _BV(ADSC); //Start conversion
while ((ADCSRA & _BV(ADSC))); //Wait for conversion
return ADC;
}
//Read uncalibrated angle (direct ADC access uses less memory than Arduino "analogRead")
//Retuns uncalibrated angle as a scaled 0-60 integer
unsigned char readAngle () {
ADMUX = 3; //Read sensor
AATsin = getADC();
ADMUX = 2;
AATcos = getADC();
return (atan2(float(AATsin-512), float(AATcos-512))/pi+1)*30;

—
NVE CORPORATION

Limited Warranty and Liability

Information in this document is believed to be accurate and reliable. However, NVE does not give
any representations or warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such information. In no event
shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including,
without limitation, lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other lega theory.

Right to Make Changes
NVE reserves the right to make changes to information published in this document including, without
limitation, specifications and product descriptions at any time and without notice.

Usein Life-Critical or Safety-Critical Applications

Unless NVE and a customer explicitly agree otherwise in writing, NV E products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or
equipment. NV E accepts no liability for inclusion or use of NVE products in such applications and
such inclusion or useis at the customer’s own risk. Should the customer use NVE products for such
application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless
against al claims and damages.

Applications

Applications described in this document are illustrative only. NV E makes no representation or warranty
that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NVE
products, and NV E accepts no liability for any assistance with applications or customer product design.
It is customer’s sole responsibility to determine whether the NV E product is suitable and fit for the
customer’s applications and products planned, as well as for the planned application and use of
customer’s third party customers. Customers should provide appropriate design and operating
safeguards to minimize the risks associated with their applications and products. NV E does not accept
any liability related to any default, damage, costs or problem which is based on any weakness or
default in the customer’s applications or products, or the application or use by customer’s third party
customers. The customer is responsible for all necessary testing for the customer’s applications and
products using NVE productsin order to avoid a default of the applications and the products or of the
application or use by customer’s third party customers. NV E accepts no liability in this respect.

An 1SO 9001 Certified Company

NVE Corporation
11409 Valley View Road
Eden Prairie, MN 55344-3617

©NVE Corporation
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written
consent of the copyright owner.

Manual No.: SB-00-072

