


#### SHIELD02

Off-Axis Angle Sensor Demonstration and Development Board



SB-00-171 Rev. November 2024

### **Overview**

**SHIELD02** is a printed circuit board assembly that allows you to evaluate NVE's unique tunneling magnetoresistance (TMR) angle sensors. Key NVE angle sensors features include:

- Analog / Digital Quadrant / I<sup>2</sup>C / SPI / ABZ interfaces
- < 1 µA supply current ideal for battery power
- Ultraminiature 2.5 x 2.5 x 0.8 mm package size
- Detect 0.1 μT<sub>PP</sub> rotating magnetic field (ALT521-10E)
- Minimum operate points as low as 3 mT<sub>PP</sub>
- –40 to +125 °C temperature range



# Common NVE Angle Sensor Applications

# Many applications can use NVE angle sensors at wide airgaps in off-axis configurations:

- Flowmeter / water meter sensor
- BLDC motor encoder

Potentiometer

- Joystick
- · Battery backup servo encoder
- Robot arm / prosthetic arm
- Cylinder position sensor



#### Items Included In This Kit

#### SHIELD02 includes the following:

- 60-RGB-LED PCBA with edge connector, male pins, and female pins
- 3D-printed magnet pocket fixture
- Ring magnet 1/4 x 1/4 x 1/8" NdFeB
- 1/8 x 3" magnet turning rod





#### Items NOT Included In This Kit

#### SHIELD02 does not includes the following:

- Microcontroller board (such as Arduino Uno)
- USB cable or power supply





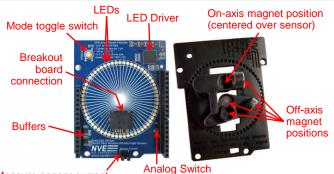
These items need to be purchased separately

## Recommended Compatible Products

#### SHIELD02 can be used to demonstrate:

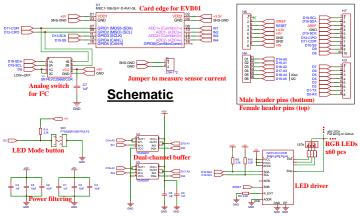
| EVB01 EVB01 EVB01                                  | Part Family                   | Sensor IC  | Eval Board       |
|----------------------------------------------------|-------------------------------|------------|------------------|
|                                                    | Saturation Analog             | AAT001-10E | AAT001-10E-EVB01 |
|                                                    | Saturation Analog             | AAT003-10E | AAT003-10E-EVB01 |
|                                                    | Saturation Analog             | AAT006-10E | AAT006-10E-EVB01 |
|                                                    | Saturation Analog             | AAT009-10E | AAT009-10E-EVB01 |
| EV801 EV801 EV801<br>ACTOR 101 ACTOR 105 ACTOR 105 | Saturation Analog             | AAT101-10E | AAT101-10E-EVB01 |
|                                                    | Digital Quadrant              | ADT001-10E | ADT001-10E-EVB01 |
| الوا الوا الوا                                     | Digital Quadrant              | ADT002-10E | ADT002-10E-EVB01 |
|                                                    | Digital Quadrant              | ADT005-10E | ADT005-10E-EVB01 |
| NVELink P                                          | Programmable SPI              | ASR002-10E | ASR002-10E-EVB01 |
| IVVELIIIK ;                                        | Programmable I <sup>2</sup> C | ASR012-10E | ASR012-10E-EVB01 |
|                                                    | ABZ Encoder                   | ASR022-10E | ASR022-10E-EVB01 |
|                                                    | Ultrasensitive Linear Analog  | ALT521-10E | ALT521-10E-EVB01 |
|                                                    |                               |            |                  |

#### **Quick Start**


- Connect SHIELD02 to a compatible single-board computer, such as Arduino Uno
- Connect a compatible EVB01 board from NVE
- Download and program demonstration or evaluation firmware: <u>github.com/NveCorporation</u>
- Attach the magnetic fixturing unit and place the magnet in one of the pockets
- Observe the LEDs tracking the angle of the magnet
- Use the "LED Mode" button for additional features (documented in the firmware)

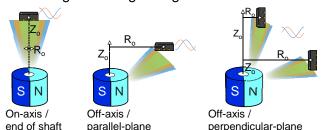
### **Circuit Description**

**SHIELD02** is a 2.1 x 2.7" PCBA in the form factor of an Arduino Shield. The board has male header pins pre-soldered, so it can easily connect to boards such as Arduino Uno. Other features include:


- 60 programmable RGB LEDs
- I<sup>2</sup>C I FD driver IC
  - Unity-gain buffer for high-impedance outputs
- Removable jumper to measure sensor current "LED Mode" pushbutton

### SHIELD02 PCB and Magnet Holder

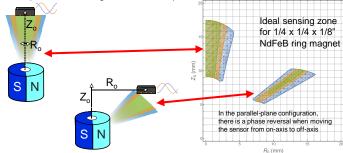



Measure sensor current

github.com/NveCorporation/Shield02-Angle-Sensor-Demo



### **Angle Sensing Principles**

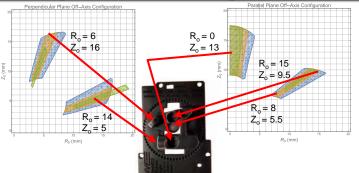

Unlike competitive angle sensors, NVE's TMR angle sensors can be used in both *on-axis* and *off-axis* angle sensing configurations



#### **Parallel-Plane Orientation**

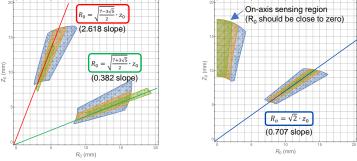
Parallel Plane Off-Axis Configuration

For best performance, sensors should be placed within the ideal sensing zone. The ideal zone depends on the magnet size and shape.




### **Perpendicular-Plane Orientation**

Ideal locations are equilibrium points where the magnetic field rotates in a perfectly non-elliptical Perpendicular Plane Off-Axis Configuration Lissajous circle. These can be determined by calculation or magnetics simulation Ideal sensing zone for 1/4 x 1/4 x 1/8" NdFeB ring magnet


 $R_0$  (mm)

### **Magnet Holder Sensing Locations**



 $\rm R_{\rm o}\, and\, \rm Z_{\rm o}\, distance$  is measured center-to-center between magnet and angle sensor IC

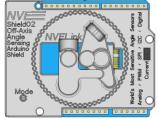
# Ideal Sensing Zones – Approximate Rule of Thumb Percendicular Plane Off-Axis Configuration Parallel Plane Off-Axis Configuration



The linear slopes are approximations obtained from theoretical calculation

### Off-Axis Angle Sensing Advice

- If the sensor cannot be placed within the ideal sensing zone, use NVE's Smart TMR Angle Sensors with calibration feature
- Magnets are typically chosen for convenience within the existing mechanical constraints. Magnets as small as 1 mm or as large as 3" can be used – only the ideal sensing zone changes
- NVE engineers can generate an ideal sensing zone simulation for your magnet:
  - sensor-apps@nve.com
- Free web-calculator: nve.com/spec/calculators
  - Application note: <a href="https://nve.com/SensorApps">nve.com/SensorApps</a>

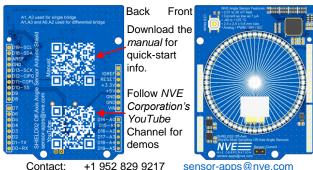

### Off-Axis Angle Sensing

NVE angle sensors are typically used for off-axis angle sensing and rotation sensing because they have:

- High sensitivity to detect weaker, off-axis magnetic fields
- Robust misalignment tolerance for easier mounting placement
- Absolute position encoding one full magnet rotation produces one full sine/cosine cycle
- Small package size sensors easily fit inside tight spaces

## Off-Axis Angle Sensor Demo and Dev Board NVF's **Shield02** includes:

- LED angle indicator and interface board
- 1/4" NdFeB magnet and 3D printed guide fixture














sensor-apps@nve.com