ILDC11 Ultraminiature DC-DC Convertor

Features
- World’s smallest DC-DC convertor
- Ultraminiature 3 x 5.5 x 0.9 mm (0.015 cm³) DFN package
- 3.3 V input to 3.3 V output
- 80 mA (¼ W) output
- Fully-regulated output
- Option for external-regulators
- No minimum load
- Ultralow ripple
- Low EMI without ferrite beads or inductors
- Short-circuit protection
- Thermal protection
- Full 2.5 kV RMS isolation
- Full –40 °C to 125 °C operating range with no derating

Applications
- Ground loop mitigation
- RS-485 / RS-422 bus power supplies
- Isolated SPI / Microwire interfaces
- Isolated analog power supplies

Description
The ILDC11 is an ultraminiature one-third watt fully-regulated 3.3V-to-3.3V DC-DC convertor that generates an independent, isolated 3.3-volt bus supply.

NVE’s proven IsoLoop® isolation technology and a unique ceramic/polymer composite barrier provide full 2.5 kV isolation and virtually unlimited barrier life.

The device minimizes board space and parts count, requiring just three external capacitors. No additional regulation is required and there is no minimum load.

Frequency hopping and shielding reduce EMI and eliminate the need for ferrite beads.

A high-temperature process allows up to 175 °C junction temperature for full power up to 125 °C operating temperature with no derating. Continuous short-circuit protection avoids excessive power dissipation.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>−0.6</td>
<td>6</td>
<td>Volts</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−55</td>
<td>180</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>−55</td>
<td>180</td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient operating temp.</td>
<td>T_{\text{min}}; T_{\text{max}}</td>
<td>−40</td>
<td></td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>−40</td>
<td></td>
<td>175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Input supply voltage</td>
<td>V_{\text{DD1}}</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>I_{\text{DD2}}</td>
<td>0</td>
<td>80</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V_{\text{DD2}}</td>
<td>3</td>
<td>3.3</td>
<td>3.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>I_{\text{DD2}}</td>
<td>80</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Short-circuit protection</td>
<td>I_{\text{DD2-SC}}</td>
<td>115</td>
<td>125</td>
<td>135</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input quiescent supply</td>
<td>I_{\text{DD1Q}}</td>
<td>200</td>
<td>240</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input supply current</td>
<td>I_{\text{DD1}}</td>
<td>380</td>
<td>440</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>\Delta V_{\text{DD2}}/\Delta V_{\text{DD1}}</td>
<td>32</td>
<td>40</td>
<td>16</td>
<td>mV/V</td>
<td>25 °C</td>
</tr>
<tr>
<td>Load regulation</td>
<td>\Delta V_{\text{DD2}}/V_{\text{DD2}}</td>
<td>5</td>
<td>6</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>(\Delta V_{\text{DD2}}/V_{\text{DD2}})/\Delta T</td>
<td>0.017</td>
<td>0.03</td>
<td></td>
<td>%/°C</td>
<td></td>
</tr>
<tr>
<td>Capacitive load</td>
<td>C_{\text{DD2}}</td>
<td>1000</td>
<td></td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>Output voltage ripple</td>
<td>V_{\text{DD2-ripple}}</td>
<td>5</td>
<td></td>
<td></td>
<td>mV_{P-P}</td>
<td>20 MHz bandwidth; I_{\text{DD2}} = max.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1 kHz bandwidth; I_{\text{DD2}} = max.</td>
</tr>
<tr>
<td>Start-up current</td>
<td>I_{\text{DD1-SU}}</td>
<td>600</td>
<td>750</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Start-up time</td>
<td>t_{\text{SU}}</td>
<td>200</td>
<td>400</td>
<td></td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Convertor frequency</td>
<td>f_{\text{OSC}}</td>
<td>105</td>
<td>113</td>
<td>120</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient</td>
<td>\theta_{\text{JA}}</td>
<td>46</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2x2p PCB per JESD51; leadframe pad grounded; free air.</td>
</tr>
<tr>
<td>Junction-to-case (top)</td>
<td>\theta_{\text{JC}}</td>
<td>12</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-sided PCB with 2 oz Cu and thermal vias; leadframe pad grounded.</td>
</tr>
<tr>
<td>Junction-to-ambient</td>
<td>\theta_{\text{JA}}</td>
<td>52.5</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction-to-case (top)</td>
<td>\theta_{\text{JC}}</td>
<td>8</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package power dissipation</td>
<td>P</td>
<td>1.5</td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>
Isolation Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage*</td>
<td>V_{ISO}</td>
<td>2500</td>
<td></td>
<td></td>
<td>V_{RMS}</td>
<td>Per VDE V 0884-11</td>
</tr>
<tr>
<td>Working voltage</td>
<td>$V_{V_{pk}}$</td>
<td>400</td>
<td></td>
<td></td>
<td>V_{RMS}</td>
<td></td>
</tr>
<tr>
<td>Transient overvoltage</td>
<td>$V_{IO_{TM}}$</td>
<td>4000</td>
<td></td>
<td></td>
<td>V_{pk}</td>
<td></td>
</tr>
<tr>
<td>Surge immunity</td>
<td></td>
<td>6666</td>
<td></td>
<td></td>
<td>V_{pk}</td>
<td></td>
</tr>
<tr>
<td>Creepage distance (external)</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>mm</td>
<td>Per IEC 60601</td>
</tr>
<tr>
<td>Total barrier thickness (internal)</td>
<td></td>
<td>0.013</td>
<td>0.016</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Isolation barrier resistance</td>
<td>R_{IO}</td>
<td>$>10^{14}$</td>
<td></td>
<td>10^{14}</td>
<td>Ω</td>
<td>500 V_{RMS}</td>
</tr>
<tr>
<td>Isolation barrier capacitance</td>
<td>C_{IO}</td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
<td>f = 1 MHz</td>
</tr>
<tr>
<td>Leakage current</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>μA$_{RMS}$</td>
<td>240 V_{RMS}, 60 Hz</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td>≥ 175</td>
<td></td>
<td></td>
<td>V_{RMS}</td>
<td>Per IEC 60112</td>
</tr>
<tr>
<td>Barrier life</td>
<td></td>
<td>44000</td>
<td></td>
<td></td>
<td>Years</td>
<td>100°C, 1000 V_{RMS}, 60% CL activation energy</td>
</tr>
</tbody>
</table>

*Each part tested at 1590 V_{pk} for 1 second, 5 pC partial discharge limit. Samples tested at 4000 V_{pk} for 60 sec.; then 1358 V_{pk} for 10 sec. with 5 pC partial discharge limit. UL 1577 approval pending under Component Recognition Program File Number E207481.
ILDC11 Ultraminiature DC-DC Convertor

Features

True Isolation
A unique ceramic/polymer composite barrier provides full 2.5 kV isolation with virtually unlimited barrier life.

Low Parts Count
The only external components required are three inexpensive bypass capacitors on the VDD1, VDD2, and VF pads. This low external parts count reduces board area and cost.

Fully Regulated with no Minimum Load
Unlike other DC-DC convertors, the ILDC11 has a fully-regulated output specified over the full input voltage and output current operating ranges. This eliminates the need for an external regulator or load resistor.

Ultralow Ripple
An inexpensive external filter capacitor (VF) and excellent line regulation ensure output ripple voltage is less than 5 mV_{p-p}.

Short-Circuit Protection
The output current is internally limited to approximately 125 mA. This provides short-circuit protection and eliminates the need for external protection circuitry.

Inherently Low EMI
The DC-DC convertor oscillator operates above 88 MHz, a much higher frequency than conventional DC-DC convertors, where emission limits are higher since there is less risk of interference with some common commercial radio and television broadcasting.

Frequency-hopping technology dramatically reduces peak EMI, and synchronous rectification and PWM control are avoided, resulting in inherently low EMI. Ferrite beads are not required for EMI mitigation.

These features allow CISPR and FCC compliance without external components or shielding.
Operation

An ILDC11 block diagram is shown below:

A 113 MHz oscillator drives a high-frequency power amplifier, which in turn drives an IsoLoop® microtransformer primary. Frequency hopping reduces EMI peak amplitudes, and embedded magnetic shielding further reduces radiated EMI.

On the other side of the isolation barrier, the transformer secondary output is filtered, rectified, and regulated by a low-EMI low drop-out regulator with a precision bandgap voltage reference.

A high-temperature process allows up to 175 °C junction temperature for full power up to 125 °C operating temperature with no derating.
Application Information

Low Parts Count
The only external components required are three inexpensive bypass capacitors: a 0.1 µF ceramic capacitor placed as close as possible to the VDD1 pad, a 10 µF ceramic capacitor for the VDD2 pad, and a 0.1 µF/16 V filter capacitor near the VF pad.

Start-Up Current
The input power supply to the DC-DC convertor must be able to supply a start-up surge current of 750 mA for at least 700 ns for the DC-DC convertor to start up properly. If the input current is supplied by a regulator (such as shown in Figure 16) a one-amp regulator provides adequate current.

Fully Regulated with no Minimum Load
The ILDC11 has a fully-regulated output specified over the full input voltage and output current operating ranges, eliminating the need for an external regulator or load resistor.

Optional External Regulation
An external regulator can be used in place of the ILDC11’s internal low drop-out regulator for voltages up to approximately 7.5 volts. The maximum output current decreases at higher regulator output voltages, but the output power capacity remains approximately 250 milliwatts.

Inherently Low EMI
Inherently low EMI eliminates the need for ferrite beads or other EMI mitigation.

No Temperature Derating
A double sided, double buried power plane (“2s2p”) printed-circuit board optimizes thermal performance, allowing full power up to 125 °C operating temperature with no derating. Thermal vias should be used between the power plane and the board surfaces. Both input-side ground pads (pads 1 and 3) and the leadframe pad should be grounded using wide traces to help cool the leadframe.

At the full output current with the recommended PCB, the ILDC11 dissipates approximately one watt and the resultant junction temperature rise is 46 °C, so at 125 °C ambient the junction temperature is less than the 175 °C maximum junction temperature.

A simple double-sided PCB with thermal vias can be used rather than a 2s2p PCB with some derating (see Figure 6).

Maintaining Creepage
Creepage distances are often critical in isolated circuits. Therefore power planes should be spaced to avoid compromising creepage or clearance, and board pads should not extend past the part pads to avoid compromising clearance.
Typical Performance Graphs

Figure 2. Typical line regulation (25 °C).

Figure 3. Typical load regulation ($V_{DD1} = 3.3$ V; 25 °C).

Figure 4. Typical input current versus output current ($V_{DD1} = 3.3$ V; 25 °C).

Figure 5. Conversion power efficiency ($V_{DD1} = 3.3$ V; 25 °C).

Figure 6. DC-DC convertor output vs. temperature and self-limiting current.

Figure 7. Temperature derating curve ($V_{DD1} = 3.3$ V).
Figure 8. Typical unregulated voltage (VF) versus output current. ($V_{DD1} = 3.3 \text{ V}; 25 \text{ °C}$).

Figure 9. Typical start-up current (max. load; no V_{DD1} bypass capacitor).

Figure 10. Typical output startup ($C_L = 10 \text{ µF}$).

Figure 11. Typical output transient load response ($C_L = 10 \text{ µF}$).
Typical Applications

Typical isolated RS-485 bus power supply and node:

Figure 12. An isolated 3.3-volt RS-485 bus supply and node.

An isolated 3.3 volt bus supply is generated from the controller supply. The ILDC11 generates enough power for an RS-485 bus and termination resistors.
Isolated controller supply from a 3.3-volt bus:

Normally the bus supply is generated from the controller supply, but the reverse is also possible. An advantage of this configuration is that since the DC-DC convertor does not need to supply the bus-side power, the bus can have two 120Ω termination resistors with the transceiver running at maximum speed, a combination that would exceed the ILDC11’s maximum output current if it were powering the bus. The ILDC11 generates enough power to supply a microcontroller and other circuitry in addition to a transceiver.
Isolated SPI sensor interface:

Isolation reduces noise by eliminating ground loops, and improves safety by providing another insulation level. The ILDC11 generates an isolated power supply to independently power the sensor. The four-channel IL717 isolator transmits the SPI signals while maintaining galvanic isolation. A five-channel IL261 isolator can be used to select between two sensors. A similar circuit can be used for a variety of four-wire interface sensors, including angle, magnetic field, current, temperature, or pressure sensors.
An isolated analog power supply generated by the ILDC11 significantly improves the noise performance of a successive-approximation ADC. The three-channel IL814TE isolates the ADC’s serial interface. A similar circuit can be used for other three-wire SPI or MICROWIRE peripherals such as DACs or sensors.

Figure 15. Isolated ADC serial interface.
Isolated 5-volt output:

![Diagram of ILDC11 Ultraminiature DC-DC Convertor](image)

Figure 16. A 3.3-volt input / 5-volt output isolated supply.

An inexpensive low-dropout regulator can be added to the ILDC11’s VF output to provide an isolated 5-volt output. If maximum current is not required, a commodity regulator such as a 78L05 can be used rather than an LDO regulator.

5-volt input:

![Diagram of ILDC11 Ultraminiature DC-DC Convertor](image)

Figure 17. A 5-volt input / 3.3-volt output isolated supply.

An inexpensive chip-scale linear regulator such as an NCP161 can be used for a 5-volt input.

High-efficiency 5-volt input:

![Diagram of ILDC11 Ultraminiature DC-DC Convertor](image)

Figure 18. A 5-volt input / 3.3-volt with a buck regulator.

A step-down (buck) switching regulator can be used with a 5-volt input for higher efficiency than a linear regulator. A 1 A regulator is used to accommodate the ILDC11’s start-up current.
Isolated 12-volt output:

Figure 19. A 3.3-volt input / 12-volt output isolated supply.

An inexpensive boost regulator can be added to the ILDC11 to provide an isolated 12-volt output. The ILDC11’s inherent stability allows it to directly drive the inductive load required for the boost regulator.
Isolated 5-volt bus system:

Figure 20. An isolated 5-volt RS-485 bus system.

An ILDC11 plus an external low dropout regulator provides isolated five volts for a traditional RS-485 bus. The 5-volt capacity is 50 mA, which is enough to power an RS-485 transceiver without termination resistors. It can also power a number of additional low-power nodes if desired. Low-power IL2985 transceivers have a maximum bus-side quiescent supply current of less than 2 mA. Other 5-volt isolated transceiver options include the 40 Mbps IL3585, the 40 Mbps PROFIBUS IL3685, the low-cost IL3085, and the full-duplex IL3522 or IL3022. Ultramiitary IL3685-1E or IL3085-1E QSOP16 versions are available to minimize board area.
Isolated H-Bridge Drivers:

The ILDC11 isolates and floats the high-side gate power, and commodity regulators provide the six volts needed to power the isolators and drive the MOSFET gates.

Four channels of isolation in three MSOP-8 isolators allow referencing the high-side gate signals to the floating MOSFET source pins, plus they level-shift low-voltage controller inputs to six volts to drive MOSFET gates. These isolators have low-impedance outputs to directly drive MOSFETs, so separate MOSFET drivers are not required. The IL600CMTI isolators are the world’s smallest isolators, with the highest common-mode transient immunity in the industry. With up to 350 kV/μs guaranteed transient immunity, the IL610CMTI prevents spurious isolator switching when the high-side MOSFET switches.
The ILDC11’s unregulated VF output can be used to drive MOSFETs requiring approximately 12 volts of gate drive. The VF output provides a minimum of nine volts, which is enough to fully saturate RJK1526 or similar MOSFETs. ICL7667 or similar MOSFET drivers translate the 3.3 V IL611CMTI isolator outputs to 12 volts and provide instantaneous high gate-drive currents for fast switching speeds with large MOSFETs.
Evaluation Board

ILDC11-01 Evaluation Board
This board uses a 2s2p PCB with thermal vias for optimal thermal performance. The 1.75 by 1.75 inch (45 by 45 mm) board has an ILDC11-15E plus the three required external bypass capacitors as well as LEDs to show the DC-DC convertor is operating. Screw terminals provide easy connections.

RS-485 / DC-DC Convertor Demonstration Boards
The ILDC11 is ideal for generating isolated bus supplies for RS-485 nodes. These 4 x 3 inch (100 x 75 mm) boards demonstrate complete isolated RS-485 nodes using isolated transceivers and ILDC11-15Es. The boards demonstrate recommended layout practices, and provide screw terminal and test point connections.

IL3685P-ILDC11-01: Isolated 3.3 V RS-485 Node
This Demonstration Board is a complete isolated 3.3-volt RS-485 node using an IL3685PE 40 Mbps isolated transceiver and an ILDC11-15E DC-DC convertor.

IL2985-ILDC11-01: Isolated 5 V RS-485 Transceiver Node
This board is an isolated 5-volt RS-485 node using an IL2985E low-power transceiver and an ILDC11-15E. The ILDC11-15E isolates the 3.3-volt controller supply and a commodity regulator provides a five-volt bus supply. The IL2985E is a 4 Mbps low-power, fully-isolated, 5-volt bus transceiver.
### Pad	Symbol	Description
1 | GND1 | Input-Side Ground (internally connected to pad 3)
2 | VDD1 | Input Supply (bypass with a 0.1 µF capacitor)
3 | GND1 | Input-Side Ground (internally connected to pad 1)
4 | GND2 | Output-Side Ground
5 | VF | Filter capacitor / external regulator
 (connect to a 0.1 µF / 16 V external capacitor; can be used with optional external regulator for voltages other than 3.3V)
6 | VDD2 | Output (bypass with a 10 µF / 6.3 V capacitor)

Leadframe pad
- GND1 | Input-side leadframe connection
 (connect to GND1 to optimize thermal performance)

Notes:
- Dimensions in millimeters.
- Soldering profile per JEDEC J-STD-020C, MSL 1.
Recommended Layout Footprint

Dimensions in inches
(millimeters)
Ordering Information

ILDC11-15E TR7

Product Line
IL = Isolation products

Product Family
DC = DC-DC convertor

Part Number
11 = 3.3 V in / 3.3 V out

Part Package
15E = 3 x 5.5 mm DFN package, RoHS-compliant

Bulk Packaging
Blank = Bulk
TR7 = 7” Tape and Reel
TR13 = 13” Tape and Reel
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISB-DS-001-ILDC11-RevE</td>
<td>Oct. 2020</td>
<td>Change
• Added VF vs. output current typical performance graph (Figure 8).
• Added descriptions of external regulator options.
• Revised external regulator reference designs and isolated H-bridge driver.</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-RevD</td>
<td>Sept. 2020</td>
<td>Change
• More detailed Figure 18 (isolated H-bridge driver).</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-RevC</td>
<td>July 2020</td>
<td>Changes
• Added start-up current specification (p. 2) and typical graph (Figure 10).
• Added thermal protection description (p. 2) and typical graph (Figure 10).
• Updated step-down regulator reference design with higher-current regulator (Figure 16).</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-RevB</td>
<td>June 2020</td>
<td>Change
• Added efficiency performance graph (Figure 5).</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-RevA</td>
<td>June 2020</td>
<td>Changes
• Finalized performance graphs.
• Changed package description from QFN to DFN.
• Additional application circuits.
• Initial release.</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-PRELIM3</td>
<td>February 2020</td>
<td>Changes
• Updated and expanded thermal resistance specifications.
• Added a derating curve for a double-sided PCB.
• Added application circuits.
• Added Evaluation Boards.</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-PRELIM2</td>
<td>January 2020</td>
<td>Changes
• Updated and expanded thermal resistance specifications.
• Added application circuits with external regulators.
• Added recommended pad footprint layout (p. 12).</td>
</tr>
<tr>
<td>ISB-DS-001-ILDC11-PRELIM</td>
<td>December 2019</td>
<td>Change
• Preliminary release.</td>
</tr>
</tbody>
</table>
Datasheet Limitations
The information and data provided in datasheets shall define the specification of the product as agreed between NVE and its customer, unless NVE and customer have explicitly agreed otherwise in writing. All specifications are based on NVE test protocols. In no event however, shall an agreement be valid in which the NVE product is deemed to offer functions and qualities beyond those described in the datasheet.

Limited Warranty and Liability
Information in this document is believed to be accurate and reliable. However, NVE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including, without limitation, lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Right to Make Changes
NVE reserves the right to make changes to information published in this document including, without limitation, specifications and product descriptions at any time and without notice. This document supersedes and replaces all information supplied prior to its publication.

Use in Life-Critical or Safety-Critical Applications
Unless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and such inclusion or use is at the customer’s own risk. Should the customer use NVE products for such application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless against all claims and damages.

Applications
Applications described in this datasheet are illustrative only. NVE makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NVE products, and NVE accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NVE product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NVE does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Limiting Values
Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the recommended operating conditions of the datasheet is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and Conditions of Sale
In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NVE hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NVE products by customer.

No Offer to Sell or License
Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export Control
This document as well as the items described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Automotive Qualified Products
Unless the datasheet expressly states that a specific NVE product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NVE accepts no liability for inclusion or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NVE’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NVE’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NVE for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NVE’s standard warranty and NVE’s product specifications.