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Symmetric key generation based on biometrics has emerged as a promising solution for wearables pairing. Among various 
biometrics, heartbeats offer significant potential owing to their inherent randomness and spontaneity. Ballistocardiography 
(BCG), in particular, stands out for its accessibility and inclusivity, as it measures the body’s recoil forces in response to 
cardiac blood ejection into the vasculature. However, traditional approaches to BCG suffer from challenges in sensing on 
wearables and limited key generation rates. To this end, this paper presents MagKey, a system that enables wearables with 
BCG-based key generation. MagKey overcomes the difficulties in effective BCG sensing by translating skin vibration caused 
by recoil forces into magnetic field vibration (MFV). Moreover, MagKey demonstrates that the peak-to-peak trend (PPT) of 
MFV signals can reliably extract keys, and thus improve the key generation rate. To mitigate the impact of noise and motion 
artifacts on key generation, MagKey employs analog filters and a peak screening method for signal processing. We implement 
MagKey on a one-layer flexible printed circuit (FPC) and a two-layer printed circuit board (PCB). Extensive experiments 
show the usability and effectiveness of MagKey. Furthermore, our security analyses illustrate the scheme’s resilience against 
potential attacks.
CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; • Security 
and privacy → Authentication; • Computer systems organization → Embedded and cyber-physical systems. 
Additional Key Words and Phrases: Key generation, GMR sensor, magnetic field vibration, heartbeat signal.
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1 INTRODUCTION
The ever-developing Internet of Things (IoT) brings the prosperity of wearables and actuation applications [1, 2]. 
The global wearable electronics market size was valued at $81.40 billion in 2020, and is expected to reach $459.58
Authors’ addresses: Junying Huang, Zhejiang University, Hangzhou, China, hjy23@zju.edu.cn; Xiuzhen Guo, Zhejiang University, Hangzhou, 
China, guoxz@zju.edu.cn; Chaojie Gu, Zhejiang University, Hangzhou, China, gucj@zju.edu.cn; Yuchen Miao, Zhejiang University, Hangzhou, 
China, miaoyc@zju.edu.cn; Shibo He, Zhejiang University, Hangzhou, China, s18he@zju.edu.cn; Yuanchao Shu, Zhejiang University, 
Hangzhou, China, ycshu@zju.edu.cn; Jiming Chen, Zhejiang University, Hangzhou, China, cjm@zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. 
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from 
permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2474-9567/2025/3-ART6
https://doi.org/10.1145/3712272

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 215. Publication date: March 2025.

HTTPS://ORCID.ORG/0009-0003-8257-8745
HTTPS://ORCID.ORG/0000-0002-8655-8130
HTTPS://ORCID.ORG/0000-0003-2153-811X
HTTPS://ORCID.ORG/0009-0000-3796-1057
HTTPS://ORCID.ORG/0000-0002-1505-6766
HTTPS://ORCID.ORG/0000-0002-9542-7095
HTTPS://ORCID.ORG/0000-0003-3155-3145
https://doi.org/10.1145/3712272
https://orcid.org/0009-0003-8257-8745
https://orcid.org/0000-0002-8655-8130
https://orcid.org/0000-0003-2153-811X
https://orcid.org/0009-0000-3796-1057
https://orcid.org/0000-0002-1505-6766
https://orcid.org/0000-0002-9542-7095
https://orcid.org/0000-0003-3155-3145
https://doi.org/10.1145/3712272
Michelle Lenker
Text Box
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 6. Publication date: March 2025.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712272&domain=pdf&date_stamp=2025-03-04


215:2 • Huang et al.

GMR GMR
A

B

Skin 

Vibration

10100001

MFV

Signal 

Window

Key

21

h1
h2

1 0

A

Window

Key

2

h1
h2

1 0

B
MFV

Signal 

GMR 

detector
A B

Skin Vibration

Heartbeat

Magnetic Vibration

GMR readings change

Symmetric key generation

Magnet Magnet

GMR 

sensor

GMR 

detector

GMR 

sensor

1

Trend Trend

Fig. 1. An illustration of MagKey. The Skin vibration from the heartbeat leads to the vibration of the magnet attached to the
skin. The magnetic vibration can be captured by the GMR sensor to generate symmetric keys.

billion by 2030 [3]. The rapid advancement of wearables has given rise to a wide range of device-to-device
(D2D) communication functions and applications, including social networking, health monitoring [4], and mobile
payment. As a fundamental step of D2D communication, how to securely pair wearable devices has attracted
increasing attention from academia and industry.

Recently, symmetric key generation based on biometric characteristics has emerged as a promising solution for
wearables pairing. Wearables capitalize on ubiquitous body signals [5] or person-independent physical attributes
as sources for random symmetric key generation [6, 7]. When two wearables independently generate identical
keys, it implies that these devices are in proximity to the same individual. This method establishes mutual trust
between wearables by harnessing the entropy of the random sources.
Heartbeats hold significant promise among all biometric-based symmetric key generation solutions due to

their inherent randomness and spontaneity. The heartbeat signal is spontaneous and thus can be measured
anytime and anywhere, making it a versatile and reliable source for symmetric key generation [8]. Existing
approaches mainly utilize sensors to capture heartbeat representations, including electrocardiography (ECG) [9],
photo-plethysmography (PPG) [10], Seismocardiography (SCG) [11], and Ballistocardiography (BCG) [12, 13].
Compared with ECG, PPG, and SCG, BCG offers greater accessibility by measuring the body’s recoil forces in
response to cardiac blood ejection into the vasculature. Additionally, the BCG demonstrates notable inclusivity.
For example, PPG measurements can sometimes be affected by variations in skin tones because they rely on light
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absorption and reflection. Thus, it could serve as a promising random signal source for symmetric key generation
on wearables.
However, achieving BCG-based on-wearable symmetric key generation still faces several challenges.
• Low-fidelity BCG signal sampling. Current wearable BCG measurements rely on piezoelectric sensors [14–
16]. When pressure is applied, it displaces the piezo film from its mechanical neutral axis, inducing high strain
within the piezopolymer and generating high voltages [17]. However, the recoil force experienced by the wearable
is typically weak, resulting in insufficient deflection of the piezopolymer. Consequently, piezoelectric sensors
struggle to accurately measure the BCG. Furthermore, sensors placed at different locations experience varying
recoil forces from the body, leading to inconsistent performance.
• Limited key generation rate. Current heartbeat-based schemes extract inter-pulse interval (IPI) information
for key generation, leveraging its nature as a recognized random signal source [8, 18, 19]. However, the IPI has
limited entropy. Even when employing an ECG sensor, the IPI signal can only yield approximately 3 bits of key
per second. Consequently, given the typical heart rate range of 60 - 100 beats per minute [20], it necessitates
approximately 40 seconds to generate a 128-bit key. Furthermore, employing piezoelectric sensors exacerbates
this issue due to their inherently low signal-to-noise ratio (SNR) [8], further reducing the key generation rate.
To this end, in this paper, as shown in Figure 1, we propose MagKey, a symmetric key generation scheme

that exploits BCG to achieve secure pairing on wearables. Specifically, MagKey addresses the aforementioned
challenges with the following designs.
• New BCG sensing modality and methodology. Different from existing BCG sensing modalities, MagKey
adopts the "Leverage Principle" to harness a tiny permanent magnet and a giant magnetoresistance (GMR) sensor
to sense the subtle recoil force induced by the beating of the heart. Specifically, we embed a tiny permanent
magnet on the wearable, coupled with a GMR sensor positioned nearby. During operation, the permanent magnet
functions as a compact "load arm," vibrating in response to recoil forces, thereby inducing fluctuations in the
magnetic field detected by the adjacent GMR sensor. Leveraging the exceptional sensitivity of the GMR sensor to
magnetic field variations, it effectively extends the "lever arm." In this way, we can efficiently sense BCG using
magnetic field vibration (MFV) signals.
• New random feature for key generation. To enhance the speed of key generation, we’ve identified a new
random feature within the MFV signal. Specifically, we’ve discovered that the peak-to-peak trend (PPT) of the
MFV signal demonstrates enough randomness, presenting an opportunity for its utilization as a reliable source
for key generation. The PPT exhibits the following characteristics, which are instrumental for secure wearable
pairing: (1) The PPTs of the MFV signals are similar and exhibit a strong correlation when measured by two GMR
sensors placed on the same human body; (2) The PPTs of the MFV signals exhibit no obvious correlation when
measured by two GMR sensors placed on different human bodies; (3) The PPT of the MFV signals have sufficient
randomness to extract secure cryptographic keys. Note that the PPT does not require any collection effort, as it
inherently exists within the MFV signal.
• Robust signal processing pipeline. The strength of the MFV signals is affected by the device placement,
the individual differences, and the environment due to the hardware imperfections and the vital sign dynamics.
We design a set of simple but effective signal processing algorithms for key generation, including peak-to-peak
extraction, screening, and trend alignment methods. Moreover, to eliminate the remaining bit mismatch after
signal processing and quantization, we utilize the fuzzy commitment scheme to remove inconsistent bits.

We prototype MagKey on a one-layer flexible printed circuit (FPC) and a two-layer printed circuit board (PCB)
using COTS analog components as shown in Figure 3b. We conduct extensive experiments in various practical
scenarios to evaluate the performance of MagKey. The evaluation involves 30 volunteers of diverse genders,
ages, and skin tones. Note that MagKey is compatible with the existing IPI-based key generation scheme, and
thus supports three key generation modes, i.e., PPT only, IPI only, and PPT plus IPI. The field studies show that
MagKey can effectively utilize the new random feature of heartbeats (i.e., PPT), and achieves consistently high
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Table 1. A summary of the literature on heartbeat-based key generation system.

Work Randomness extraction BGR BAR Heartbeat signals Skin tones Moisture Lightweight

MagKey (ours) Peak-to-peak trend 1 bit/s 94.2% BCG
√ √ √

MagKey w.
IPI and IPI trend

Peak-to-peak trend
/IPI/IPI trend

6 bit/s 94.2% BCG
√ √ √

Lin et al. [8] IPI (bit 4 to bit 6) 3 bit/s N/A SCG
√ √ ×

Rostami et al. [22] IPI (bit 1 to bit 4) 4 bit/s 96.4% ECG
√ × ×

Seepers et al. [23] IPI (bit 5 to bit 7) 3 bit/s N/A ECG
√ × ×

Chizari et al. [21] IPI trend 1 bit/s N/A ECG
√ × ×

Zhang et al. [6] IPI trend 1 bit/s 94.1% PPG × × √

performance with the 0.96 bit/s key generation rate, particularly in scenarios involving different skin tones (up to
0.98 bit/s), body hair (up to 0.99 bit/s), tattoos (up to 0.96 bit/s), wearing positions (up to 0.77 bit/s), and moisture
levels (up to 0.98 bit/s). As the IPI is a known random source, we focus on evaluating the MagKey in PPT only
mode. Additionally, we test the compatibility of MagKey when also including IPI as a random source. When
switching to PPT plus IPI mode, MagKey brings about a 33% improvement in key generation rate compared to
pure IPI-based approaches such as [8] and [21].
In Table 1, we compare various aspects of heartbeat-based key generation methods such as randomness

extraction, types of heartbeat signals, applicability to different skin tones and skin moisture levels, and whether
it is lightweight. Most existing heartbeat-based key generation approaches focus on extracting entropy from the
Inter-Pulse Interval (IPI). In contrast, our method leverages the peak-to-peak trend in the heartbeat signal to
extract more randomness information. This approach enhances the security and randomness of key generation,
thereby providing a more robust guarantee for encrypted communication and data protection.
MagKey explores the compact BCG for key generation. Traditional ECG sensors often require complex

electrodes that are in direct contact with skin and are not suitable for daily use. Besides, the skin surface
moisture levels can affect the results of the ECG measurements of the heartbeat; wet skin may result in poor
contact between the electrodes and the skin, which can affect the transmission of electrical signals. Similarly,
Photoplethysmography (PPG) sensors are influenced by factors such as body fluids and skin tones due to the
elevated melanin levels in darker skin, causing absorption of the laser light and consequently reducing the
signal-to-noise ratio of the measurements [24, 25]. When measuring heart rate with SCG, the sensor is usually
strapped to the chest or waist, which is uncomfortable and not light enough for the patient’s daily use. To
address these limitations, there have been efforts to measure heartbeats using Giant Magnetoresistance (GMR)
sensors [25–27]. However, the extraction of peak-to-peak trends for key generation using GMR sensors to acquire
the magnetic field vibration (MFV) signal remains unexplored. This paper extends the concept of heartbeat-based
key generation to GMR sensors, offering a novel approach in this domain.

We have developed a novel approach that uses a new feature (peak-to-peak trend) as a random source, which
improves the efficacy and robustness of existing heartbeat-based key generation methods. While the bit generation
rate of MagKey is approximately 1 bit/s, it provides a "free" random source for heartbeat-based key generation
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schemes. In practice, we can combine PPT with inter-pulse interval (IPI) for key generation, as both are derived
from the heartbeat signal. Consequently, MagKey achieves a key generation rate of about 6 bits/s by incorporating
techniques from Rostami et al. [22] and Seepers et al. [23] to extract keys through IPI and IPI trends. The major
advantages of MagKey are its robustness and inclusiveness compared to other heartbeat-based key generation
systems. MagKey can handle heartbeat measurement and key generation on wet skin and across different skin
tones, while being very lightweight. These integrated features highlight MagKey’s versatility and potential to
enhance the overall efficiency of key generation.

Additionally, the BCG method is inherently designed for stationary applications, which aligns with its charac-
teristics. BCG is typically monitored in resting conditions, e.g., in a lying, seated, or standing still posture [28].
Some studies have subjects sit quietly in a chair [29, 30] or on a bed [31]. Additionally, it is important to highlight
that heartbeat-based key generation is particularly vulnerable to motion artifacts [8, 23]. To address potential
issues in dynamic environments, we propose incorporating accelerometers as complementary devices in different
scenarios.
The main contributions of this paper are summarized as follows:
• To the best of our knowledge, this paper proposes the first-of-its-kind sensing modality, i.e., MFV, for BCG
measurement that leverages a combination of low-cost permanent magnetic and GMR sensors. Additionally,
this paper first proposes harnessing the PPT inherent in BCG as a novel source for random key generation.
• We propose a power-efficient hardware-software co-design tailored for the BCG-based key generation
scheme. We apply a filter-based signal pre-processing method in the analog domain to obtain the MFV
signal, propose a quantification method to characterize the PPT, and introduce an effective PPT screening
approach to mitigate the effects of noise and motion artifacts on key generation.
• We prototype MagKey on a one-layer flexible printed circuit (FPC) and a two-layer printed circuit board
(PCB), and follow the Institutional Review Board (IRB) protocol to conduct extensive experiments in
different environments to evaluate its usability, effectiveness, and security.

The rest of this paper is organized as follows. §2 presents the feasibility study. §3 shows the details of our
designed key generation scheme. §4 shows a wide range of evaluations to verify Magkey’s effectiveness and
robustness. §5 presents attack models and performs security analysis. §6 reviews related work. Finally, §8
concludes the paper.

2 PRELIMINARY AND FEASIBILITY
In this section, we first introduce the heartbeat detection method by using the GMR sensor and then we explore
the feasibility of symmetric key generation by leveraging the magnetic field vibration.

2.1 Heartbeat Detection with the GMR Sensor
GMR Primer. The giant magnetoresistance (GMR) refers to the phenomenon in which the electrical resistivity
of a magnetic material changes greatly when there is an external magnetic field nearby. In other words, the GMR
can convert subtle magnetic field changes into significant resistance changes. There are two types of GMR units:
parallel GMR and anti-parallel GMR, which indicate a positive or negative correlation between resistance and
external magnetic field strength. A typical GMR sensor consists of two parallel GMR units and two anti-parallel
GMR units. These four GMR units form a complete Wheatstone bridge to detect subtle changes in the magnetic
field. As shown in Figure 2, two parallel GMR units of the bridge arms exhibit 𝑅𝑚1 = 𝑅 + Δ𝑅(𝐻 ), while the
remaining two anti-parallel GMR units exhibit 𝑅𝑚2 = 𝑅 − Δ𝑅(𝐻 ). The output of this full-bridge GMR sensor is:

𝑉out = 𝑉in

(
𝑅𝑚2

𝑅𝑚1 + 𝑅𝑚2
− 𝑅𝑚1
𝑅𝑚1 + 𝑅𝑚2

)
= 𝑉in

(
Δ𝑅(𝐻 )
𝑅

)
(1)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 215. Publication date: March 2025.

Michelle Lenker
Text Box
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 6. Publication date: March 2025.

Michelle Lenker
Text Box
MagKey      •       6:5



215:6 • Huang et al.

MagWear: Practically Exploiting Biomagnetism for Wearable Vital Sign Monitoring MobiCom’24, October 2024, Washington, D.C.

Rm1

Vout

Vin

Rm1

Rm2

Rm2

(a) GMR Unit (b) GMR Sensor

H

Rm1

H

Rm2

H

Rm1

H

Rm2S
N

Ω

Magnet

GMR Unit

GMR Sensor

Anti-parallel GMR unitParallel GMR unit

Figure 2: Structure of (a) GMR unit and (b) GMR sensor

Compared with the PPG approach, monitoring human vital
signs through IBF observations have two major advantages:

a) Inclusiveness: PPG measurements can sometimes be
affected by variations in skin color and tone, as they rely on
light absorption and reflection. IBF signals are less sensitive
to these variations, potentially making them more reliable
across a wider range of individuals.

b) Contactless detection: IBF signals allow for completely
contactless monitoring as the magnetic signal is able to prop-
agate through the skin tissue, body fluids, and fabrics. This
eliminates the need for physical contact with the skin, reduc-
ing discomfort and potential skin irritation that can occur with
PPG sensors.

2.2 Measuring Sutble IBF Signals with GMR
Sensor

Although the variation of the induced biomagnetic field signal
contains a wealth of vital sign information, the strength of
this signal is extremely low (usually below 10−10𝑇 [13]), mak-
ing it challenging to detect. As such, prior works proposed
leveraging the giant magnetoresistance (GMR) unit, a highly
sensitive magnetic sensor, to measure IBF signals variations.
GMR Sensor. GMR refers to the phenomenon in which the
electrical resistivity of a magnetic material changes greatly
when it has an external magnetic field as compared with the
absence of an external magnetic field. There are two types
of GMR units: parallel GMR and anti-parallel GMR, which
means that the resistance is positively or negatively correlated
with the strength of the external magnetic field.

A commodity GMR sensor consists of two parallel GMR
units and two anti-parallel GMR units, which form a full
Wheatstone bridge [18] to measure the subtle changes in the
magnetic field. As shown in Figure 2, two parallel GMR units
of bridge arms exhibit 𝑅𝑚1 = 𝑅 +Δ𝑅(𝐻 ), while the remaining
two anti-parallel GMR units exhibit 𝑅𝑚2 = 𝑅 − Δ𝑅(𝐻 ). The
output of this full-bridge GMR sensor is:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ( 𝑅𝑚2
𝑅𝑚1 + 𝑅𝑚2

− 𝑅𝑚1
𝑅𝑚1 + 𝑅𝑚2

) = 𝑉𝑖𝑛 (Δ𝑅(𝐻 )
𝑅
) (1)

where 𝑉𝑖𝑛 is the bias voltage, 𝑅 is the initial resistance of the
GMR element, and Δ𝑅(𝐻 ) is the resistance variation caused
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Figure 3: Feasibility study result. (a) heartbeat rate. (b)
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by the external magnetic field (the induced biomagnetic field
signal in our scenario). Note from the above equation that
the GMR sensor exhibits a null output in the absence of an
external magnet. Hence it offers an intrinsic compensation
for thermal drift.
⟨Xiuzhen: distinguish two EMFs⟩

2.3 Understanding IBF-based Vital Sign
Monitoring Through Benchmark Studies

Despite the existing research that explores and validates the
potential of utilizing IBF signals for human vital sign monitor-
ing, numerous practical challenges still impede the realization
of the aforementioned advantages and the practical imple-
mentation of this approach. In this section, we follow prior
works [19, 22, 24, 30, 35] to develop a GMR-based IBF mea-
surement testbed, and conduct a comprehensive benchmark
study based on 30 volunteers. The goal is to understand the
efficacy and limitations of this approach.
Experiment Setups. We use a 30 mT permanent magnet as
the external magnet to induce the IBF signals and select a
general-purpose NVE AA004 [9] GMR sensor to capture the
IBF signals. We place the permanent magnet on the radial
artery of the wrist, and the GMR sensor is held by a robotic
arm and placed just above the permanent magnet. The dis-
tance between the GMR sensor and the permanent magnet is
0.1 mm. For the ground truth, we ask each volunteer to wear
an FDA-approved LEPU PO6 Fingertip Pulse Oximeter on
the index finger.
Signal Processing. Considering that the heartbeat rate of hu-
mans is usually between 60 and 100 bpm [38], we first pass
the signal output from the GMR sensor through a band-pass
filter of [0.6Hz, 3Hz] to remove the DC component and the
high-frequency noise. Figure 3(a-i) and Figure 3(b-i) show
the measured IBF signals from one of the 30 experiment
participants. After that, a moving average processing is ap-
plied to remove circuit noise and signal burrs. As shown in
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where 𝑉𝑖𝑛 is the bias voltage, 𝑅 is the initial resistance of the GMR element, and Δ𝑅(𝐻 ) is the resistance change
caused by the external magnetic field. From the above equation, the output of the GMR sensor is zero when the
external magnetic field does not change. When the external magnetic field changes, the output of the GMR sensor
can reflect the changes in the magnetic field significantly.
Heartbeat detection by leveraging the biomagnetism variation. Previous work has demonstrated the
potential of leveraging biomagnetism to monitor heartbeat signals [32–34]. This approach is based on a physio-
logical process where the blood circulation within the body during each heartbeat gives rise to the movement of
charged particles (ions). These ions, in turn, induce a biomagnetic field, the strength of which corresponds to the
fluctuations occurring with individual heartbeat. For example, MagWear [35] proposes a dedicated hardware
design to detect the biomagnetism to monitor the heartbeat signals by using the GMR sensor. Figure 3a shows
an illustration of heartbeat detection using biomagnetism. An external magnet is placed on the PCB board and
non-contact above the arm. The magnetic field of this external magnet is affected by the biomagnetism and can
be detected by the GMR sensor. We use this device to monitor the heartbeats of two volunteers. Figure 4a shows
the results. We observe the GMR readings are not stable with the low signal-to-noise ratio, making it difficult to
observe clear and stable heartbeat patterns. This is expected since the biomagnetism signal has an extremely
low strength (e.g., typically below 10−10𝑇 [36]), and the subtle biomagnetism signal is also susceptible to external
interference and individual differences.
Heartbeat detection by leveraging the magnetic field vibration (MFV). Instead of directly using biomag-
netism to detect heartbeat signals, we leverage the skin vibration detected by the magnetic field vibration for
heartbeat detection. Figure 3b shows an illustration of heartbeat detection using magnetic field vibration. We
place an external magnet on the FPC, which directly contacts the arm. In this way, the FPC acts as a vibration
platform and the skin vibration induced by the heartbeat can also cause the external magnet to vibrate. Hence
the GMR sensor readings will change due to the external magnetic field vibration. Figure 4b shows the detection
results. The GMR sensor readings reflect the vibrational displacement of the magnet caused by the skin vibration,
thus reflecting the heartbeat signal. We observe that the detection method based on the magnetic field vibration
performs better compared with the subtle biomagnetism. The GMR sensor readings exhibit obvious periodicity
and stability with a high signal-to-noise ratio.

2.2 Feasibility of the Magnetic Field Vibration (MFV) Signals for Symmetric Key Generation
We explore the feasibility of the MFV signals for symmetric key generation from the following aspects.
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Fig. 3. An illustration of heartbeat detection using biomagnetism vs. magnetic field vibration induced by skin vibration.
(a) An external magnet is placed on the PCB and can’t sense the skin vibration because the PCB is a hard material. (b) An
external magnet is placed on the FPC and thus can sense the skin vibration.
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Fig. 4. Heartbeat detection using biomagnetism vs. magnetic field vibration.
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Fig. 5. Similarity measurements of peak-to-peak trends and inter-pulse intervals of heartbeats: PPG sensor and GMR sensor
placed on the same person at the same time.

Similarity between the MFV and PPG Signals.We first investigate whether the MFV signal can accurately
capture heartbeat features. We place a PPG sensor [37] on a volunteer’s fingertip to measure the heartbeat.
Simultaneously, we measure the MFV signal on the volunteer’s wrist of the same hand. As depicted in Figure 5,
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Fig. 6. Similarity measurements of peak-to-peak trends of the MFV signals: Device A and Device B placed on the same
person at the same time.
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Fig. 7. Disimilarity measurements: Device A and Device B placed on the same person at different times.

Device A’s 
envelope

Device B’s 
envelope

F

Fig. 8. Disimilarity measurements: Device A and Device B placed on the different persons at the same time.

both the PPG and MFV signals exhibit similar peak-to-peak trends and inter-pulse intervals. However, it’s worth
noting a time delay between the MFV and PPG signals. This delay arises due to the placement of the sensors at
different locations, causing them to experience cardiac blood ejection at different times.
Similarity of Peak-to-peak Trend (PPT) of the MFV signal. An important feature for the feasibility of
symmetric key generation is the similarity of the MFV signals measured when a pair of wearables is placed on
the same human body. GMR sensors are very sensitive to magnetic fields, and when neighboring devices are
placed in the same area (e.g., on the same wrist) at the same time, the PPT of the MFV signals may not be the
same for a variety of reasons (blood vessel size, depth of the vessel burial, and the sensor placement, which affect
the proximity of the vessel to the magnet and the volume of blood flow in the circulation). However, similar
PPT measurements can be obtained due to the relative consistency of vascular distribution and nervous system
regulatory mechanisms. We perform preliminary experiments on the same human body to verify the similarity
and consistency of the PPT measurements of the MFV signals. Figure 6 shows similar measurements of PPT
of the MFV signals measured simultaneously by a pair of devices positioned on the wrist of the same human
body. Consequently, such similarity and consistency in MFV signal measurements serve as the foundation for
generating symmetric keys using GMR sensors.
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Temporal Irrelevance of PPT of the MFV signal. Next, we verify that the trends of the peak-to-peak value of
the MFV signals measured at different times are different for the same individual. Because blood flow and velocity
in the radial artery change over time, such changes may be influenced by a variety of factors, including physical
status, activity level, and environmental conditions. Therefore, we measure the peak-to-peak trends of the MFV
signals at different times. In particular, we perform measurements on the same human body at different times.
There is no correlation between the results measured by the two devices at different times, as shown in Figure 7.
Individual Variations in PPT of the MFV signal. Finally, we verify that the trends of the peak-to-peak values
of the MFV signals measured at the same time are different for different individuals. Figure 8 illustrates the
variability in the peak-to-peak trends of the MFV signals between different individuals. This reveals that only
GMR sensors that are attached to the same individual can provide similar measurements for key generation and
device authentication.
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Fig. 9. System overview.
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3 METHODOLOGY

3.1 System Overview
Figure 9 shows the system overview of MagKey, which includes four phases: MFV signal measurement, peak-
to-peak extraction, key establishment and information reconciliation, and key validation. In the initial phase
of MagKey, both devices independently measure the peak-to-peak values of the MFV signals and extract their
trends for key generation. Then, fuzzy commitment is used to correct the inconsistency of the symmetric key.
Finally, during the key validation phase, both devices use the message authentication code to confirm that they
have generated the same key simultaneously.

3.2 MFV signal measurement
Fig. 10 shows the process shows the process of measuring the magnetic field vibration (MFV) signal. Initially, the
GMR sensor detects changes in the magnetic field and produces an analog signal proportional to these changes.
To amplify the MFV signal, an amplifier with a gain of approximately 30 is used, resulting in an amplified signal
of approximately 0.5V.
However, the amplified MFV signal may be susceptible to noise interference, as the noise is also amplified

along with the signal. To mitigate this problem, a band-pass filter, comprising a low-pass and a high-pass filter, is
employed to isolate the MFV signal corresponding to the heartbeat frequency. The bandpass filter allows signals
in the range of [0.6Hz, 3Hz] to pass through, effectively matching the heartbeat frequency.

After passing through the bandpass filter, the amplitude distribution range of the MFV signal contains negative
voltages that cannot be adequately sampled by the microcontroller’s (MCU) analogue-to-digital converter (ADC),
which only captures positive voltages. To overcome this, a voltage lift circuit is implemented to shift theMFV signal.
The original peak-to-peak value from the bandpass filter is approximately 0.5V with a range of [-0.25V, 0.25V].
By boosting the signal by approximately 1V, the signal range is adjusted from [-0.25V, 0.25V] to [0.75V, 1.25V],
which is within the sampling range of the MCU’s ADC, which operates between [0V, 3.3V]. This conditioning
process ensures that the MFV signal is properly prepared for accurate sampling by the MCU.
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GMR Sensor Amplifier Bandpass Filter: 
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Fig. 10. MFV signal measurement.

3.3 Peak-to-peak Extraction
Peak-to-peak extraction is a crucial step in extracting keys from the MFV signals. To obtain vital human
physiological information from the MFV signals, we first design a band-pass filter that eliminates background
interference noise. Given that the typical human heart rate ranges from 60 to 100 bpm, we filter the signal output
from the GMR sensor with a band-pass filter in the range of 0.6 Hz to 3 Hz. This eliminates both the DC and
high-frequency components. Second, we divide the MFV signals into different intervals based on a sliding window
that starts at the beginning of the signal and slides sequentially. The length of the window is the current heartbeat
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period, which is defined by the time difference between two adjacent peaks in the original MFV signals. Next, we
locate the maximum and minimum values within each interval. Peak-to-peak values are calculated by taking
the difference between the maximum and minimum values, and then these peak-to-peak values are numbered
in chronological order, starting with one. Continue to move the window until the entire heartbeat signal has
been swept. The window size can be adjusted adaptively according to the current heartbeat period. Algorithm 1
describes the method for extracting peak-to-peak values from the MFV signals.

······

Window

1 n2 n-1

Moving
Window

Fig. 11. Peak-to-peak Extraction.

Algorithm 1 Peak-to-Peak Extraction
1: INPUT:𝑀𝐹𝑉 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑉𝑀𝐹𝑉

2: 𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 ← 0
3: 𝐼𝐷 ← 0
4: 𝑉𝑚𝑎𝑥 ← 0
5: 𝑉𝑚𝑖𝑛 ← 1
6: OUTPUT:{𝐼𝐷,𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 }
7: for each𝑤𝑖𝑛𝑑𝑜𝑤 ∈ [1, 𝑛] do
8: if 𝑉𝑀𝐹𝑉 > 𝑉𝑚𝑎𝑥 then
9: 𝑉𝑚𝑎𝑥 = 𝑉𝑀𝐹𝑉 ;
10: end if
11: if 𝑉𝑀𝐹𝑉 < 𝑉𝑚𝑖𝑛 then
12: 𝑉𝑚𝑖𝑛 = 𝑉𝑀𝐹𝑉 ;
13: end if
14: 𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 ← 𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛 ;
15: 𝐼𝐷 ← 𝐼𝐷 + 1 ;
16: return {𝐼𝐷,𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 }
17: end for

3.4 Peak-to-peak Screening and Trend Alignment
After extracting the peak-to-peak values of the MFV signals, we further need to conduct peak-to-peak screening
and trend alignment. There are two cases that affect the peak-to-peak values.
Case 1: a lower-boundary threshold to reduce the impact of noise. The peak-to-peak value trends of the
MFV signals in two devices vary due to noise rather than changes in the physiological characteristics of the
human body. In Figure 12a, Device A captures a second MFV signal with a larger peak-to-peak value than the
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Fig. 12. The impact of noise and sudden movement on the peak-to-peak values of MFV signals.

first MFV signal, while Device B captures a second MFV signal with a smaller peak-to-peak value than the
first MFV signal. The trend of the peak-to-peak values is different among them, but they all change by a small
amount. Therefore, we consider that their changes are caused by noise. To solve the inconsistent trend of the
peak-to-peak values caused by noise, We need a low-boundary threshold 𝑇ℎ1. We consider the peak-to-peak
value to be effective only if it exceeds a threshold value of 𝑇ℎ1 = 𝛼 · 𝜎 , where 𝛼 is the threshold scaling factor,
and 𝜎 is the standard deviation of samples from MFV signals.
Case 2: an upper-boundary threshold to reduce the impact of suddenmovement. The peak-to-peak values
of the MFV signals may increase abruptly due to the sudden movement. The small external magnet attached to
the skin not only detects the skin vibration caused by the heartbeat, but also tracks the movement of the body part
where the device is placed. In Figure 12b, Device A captures a second MFV signal with a larger peak-to-peak value
than the first MFV signal due to sudden movement while Device B captures a second MFV signal with a smaller
peak-to-peak value than the first MFV signal due to heartbeats, making it difficult to align the MFV signals. In
order to solve this problem, we need an upper-boundary𝑇ℎ2 threshold to reduce the impact of sudden movement.
We consider the peak-to-peak value to be effective only if it is lower than a threshold value of 𝑇ℎ2 = (1 − 𝛼) · 𝜇,
where 𝜇 is the mean of the samples of the MFV signals.
Summary.We present a filtering technique that retains only the sequence numbers whose peak-to-peak variation
is between the lower threshold 𝑇ℎ1 and the upper threshold 𝑇ℎ2, where the lower threshold is determined by
noise while the upper threshold is determined by movement. Algorithm 2 provides a method for the peak-to-peak
screening and alignment of MFV signals. The determination of the parameter 𝛼 is discussed in §4.3. Each device
then directly compares its own and another device’s peak-to-peak sequence numbers, only keeping the common
values. For example, the effective peak-to-peak sequence of Device A and Device B is 𝐼𝐷𝑐𝑜𝑚𝑚𝑜𝑛 = 𝐼𝐷𝐴 ∩ 𝐼𝐷𝐵 ,
where 𝐼𝐷𝐴 and 𝐼𝐷𝐵 are the peak-to-peak sequences of Device A and Device B, respectively. This process is trend
alignment.
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Algorithm 2 Peak-to-Peak Screening
1: INPUT:{𝐼𝐷 (𝑖),𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖)}
2: 𝑇ℎ1 ← 𝛼 · 𝜎
3: 𝑇ℎ2 ← (1 − 𝛼) · 𝜇
4: OUTPUT:{𝐼𝐷 (𝑖),𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖)}
5: for each 𝑖 ∈ [1, 𝑛] do
6: if 𝑇ℎ1 < |𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖) −𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖 − 1) | < 𝑇ℎ2 then
7: 𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖) ← 𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖) ;
8: 𝐼𝐷 (𝑖) ← 𝐼𝐷 (𝑖) ;
9: else
10: 𝐼𝐷 (𝑖) ← 0 ;
11: 𝑉𝑃𝑒𝑎𝑘2𝑃𝑒𝑎𝑘 (𝑖) ← 0 ;
12: end if
13: end for

× 1 0 1 1 0 × 1 0 0

× 1 0 × 1 0 1 1 0 1

ID 0 1 2 3 4 5 6 7 8 9

AliceKey

BobKey

1010100

1010101

Information 
Reconciliation

1010100

1010100

×:This bit is discarded because it is caused by noise or movement.
Both devices will discard this bit whenever a “×”appears.

The last bit is mismatched and needs to be corrected.

Both 
devices 
receive 

the same 
key.
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3.5 Key Generation and Information Reconciliation
Key generation.After the trend alignment, the two devices perform a quantization operation on the peak-to-peak
value corresponding to the serial number of the common list, if the current peak-to-peak value is greater than
the previous peak-to-peak value, it is quantized as bit "1", otherwise it is quantized as bit "0".
Information reconciliation. When the keys are generated by the two devices, it is likely that the keys will
not be identical due to imperfections in the sensors and variability in physiological characteristics, as shown in
Figure 13. Therefore, we conduct the information reconciliation to correct the key mismatches that may exist
between them.

We use fuzzy commitment primitives[38], which combine both error correction code (ECC) and cryptographic
techniques, to address potential inconsistencies in the key generation between two devices. The error correction
code can detect and correct any discrepancies in the binary sequences generated by the devices that are within
the correction capacity. For example, Alice and Bob will use the same set of error correction codes, i.e. Bose-
Chaudhuri-Hocquenghem (BCH) codes in this paper. Successful correction can only be performed if the sequence
of bits extracted by both devices has a small number of bit errors. Specifically, the number of mismatched bits
between the keys generated by Alice and Bob should be within the error tolerance range of the error correction
code. If the number of error bits exceeds this error tolerance range, the correction process cannot be finished.
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Thus, the error correction code must have the ability to correct mismatched bits between two legitimate users,
while preventing a successful attack by an illegitimate user.

Figure 14 shows the specific process of fuzzy commitment. The sender performs the ECC encoding process
(step "[1]" in Figure 14) on the nonce 𝐾 to obtain the message 𝐾𝐸𝐶𝐶 , which adds redundant information to 𝐾 . Let
the function 𝐸𝑁𝐶 (·) denote the mapping from 𝐾 to 𝐾𝐸𝐶𝐶 , then 𝐾𝐸𝐶𝐶 = 𝐸𝑁𝐶 (𝐾) ("[2]"). In contrast, the receiver
uses the ECC decoding process 𝐷𝐸𝐶 (·) to correct erroneous bits in 𝐾𝐸𝐶𝐶 , denoted by 𝐾 ′′𝐸𝐶𝐶 = 𝐷𝐸𝐶 (𝐾 ′𝐸𝐶𝐶 ) ("[5]").
For the fuzzy commitment, the first step is to perform an XOR operation and create a commitment. The sender
performs the XOR operation with𝐾𝐸𝐶𝐶 and the binary sequence𝐾𝐴 to generate the ciphertext𝐾𝐶 , which is written
as 𝐾𝐶 = 𝐾𝐸𝐶𝐶 ⊕ 𝐾𝐴 ("[3]"). The sender then creates a commitment as follows: 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 = {𝐾𝐶 , 𝐻𝑎𝑠ℎ(𝐾𝐴)},
where 𝐻𝑎𝑠ℎ(·) represents a one-way hash function ("[7]"). When the receiver receives the ciphertext 𝐾𝐶 , it first
XORs its own binary sequence 𝐾𝐵 with the ciphertext 𝐾𝐶 and 𝐾𝐶 ⊕ 𝐾𝐵) to get the error correction code 𝐾 ′𝐸𝐶𝐶
("[4]"), which may have error bits. After error correction, we get 𝐾 ′′𝐸𝐶𝐶 . If the percentage of error bits in the
length of the codeword 𝐾 ′𝐸𝐶𝐶 is within the error correction capability, the key can be successfully revealed by
𝐾 ′𝐵 = 𝐾 ′′𝐸𝐶𝐶 ⊕ 𝐾𝐶 ("[6]") and both devices agree on the same key (𝐻𝑎𝑠ℎ(𝐾𝐴) = 𝐻𝑎𝑠ℎ(𝐾 ′𝐵), i.e., 𝐾𝐴 = 𝐾 ′𝐵) ("[8]"),
otherwise the process must be restarted.

3.6 Key Validation
After validating that 𝐾𝐴 = 𝐾 ′𝐵 , the receiver sends the Message Authentication Code (MAC) to the sender for key
validation, denoted by 𝑀1 = 𝑀𝐴𝐶 (𝐾 ′𝐵 , 𝑁𝐴𝑀𝐸𝑆 | | 𝑁𝐴𝑀𝐸𝑅), where 𝑁𝐴𝑀𝐸𝑆 and 𝑁𝐴𝑀𝐸𝑅 are the names of the
sender and the receiver, respectively, and | | represents the concatenate operation. The sender then computes the
message authentication code of the message (i.e.,𝑀𝐴𝐶 (𝐾𝐴, 𝑁𝐴𝑀𝐸𝑆 | | 𝑁𝐴𝑀𝐸𝑅)) and compares it to𝑀1 to verify
that the two legitimate devices have successfully generated the same symmetric key.

4 EVALUATION

4.1 MagKey Prototype
We prototype the MagKey using off-the-shelf analog components and the ultra-low-power TI CC2650 Launchpad.
Figure 15 shows the hardware prototype. MagKey consists of three main components: (1) a GMR detector, (2) an
analog front-end, and (3) a wireless digital back-end.
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• The GMR detector. The GMR detector consists of a GMR sensor and an external magnet. We choose NVE
AA002 [39] as the GMR IC. For the external magnet, we choose a permanent magnet with a strength of 125mT
and a size of 5mm × 2mm. To make the external magnet on the GMR detector better reflect the strength of
the heartbeat signals, we fix the magnet of the GMR detector on the flexible printed circuit (FPC). The skin
vibration causes the FPC deformation and then further causes the magnet to be displaced. The FPC is a soft
material and can sense the vibration of the skin more sensitively, compared to placing the magnet directly on
the PCB. In addition, we place the GMR sensor on a reinforced FPC, which makes the structure of the GMR
detector more stable. Our hardware design balances performance and wearing comfort.
• The analog front-end. The output of the GMR sensor is connected to a low power amplifier consisting of an
INA126 IC [40] with a gain of 30. This configuration enables the detection and amplification of subtle variations
in the MFV signals. The resulting output signal is subsequently fed to a filter processing circuit. There is a
high-pass filter and a low-pass filter consisting of OP07 [41] from Texas Instruments, with cutoff frequencies
of 0.6 Hz and 3 Hz, respectively. By merging these two high-pass and low-pass filters, a band-pass filter [0.6 Hz,
3 Hz] can be created, which eliminates other signals to obtain the desired heartbeat signals. The operational
amplifier INA126 amplifies the filtered analog signal with a gain of 20. The signal is then converted by a voltage
converter to 0-3.3V and transmitted to the wireless digital back-end.
• The wireless digital back-end. For the wireless digital back-end, we choose Texas Instruments’ low-power
wireless MCU, the CC2650, which integrates a 2.4GHz RF transceiver compatible with the low-power Bluetooth
(BLE) 4.2 specification and the IEEE 802.15.4 PHY and MAC. We use the CC2650’s on-chip 12-bit ADC to
sample the signals processed by the analog front-end and convert them to digital signals for further processing.
Therefore, the MCU is responsible for (1) acquiring the analog signals, converting them to digital signals, and
processing them to generate the keys; (2) subsequent wireless communication between the devices, including
information exchange, information verification, and key validation.
• Magnet Safety. The Magnet Safety Guideline from ACGIH dictates that a magnetic field strength up to
600mT [42] is acceptable for routine exposure of the extremities. Our evaluation shows that by placing
magnetic pads under the magnet to reduce the magnetic fields, the magnetic field strength absorbed by the
skin is less than 60 mT. This level of magnetic field strength is safe for daily use according to the ACGIH safety
guidelines. Furthermore, we recommend that individuals with cardiac implants to consult with their medical
practitioner to ensure that the magnetic field will not adversely affect their health, as magnetic field exposure
of less than 0.5 mT is considered safe for this population [43].

4.2 Experiment Setup
In this section, we use our MagKey prototype to capture human heartbeat signal data for secure device pairing.
In order to evaluate the efficiency and security of MagKey, we investigate various influencing factors. These
include users of different ages, genders, BMIs, and skin tones, as well as different environments, users’ motion
status, the part of the device being worn, the users’ physiological state, algorithmic parameters, and different
attack scenarios. We then measure the randomness of the generated keys and their energy consumption.
Evaluation metrics. We use the following three metrics to characterize the performance of MagKey:

• Bit agreement rate (BAR): The BAR is the percentage of matching bits generated by Alice and Bob, i.e., the
number of matching bits over the length of the key.
• Bit generation rate (BGR): The BGR is the number of bits that the system can produce per second; it
indicates the rate of key generation.
• Entropy: Entropy quantifies the unpredictability and randomness of generated keys as measured by Shannon
Entropy. This metric reveals the information that each bit provides. A greater entropy value, ranging from
0 to 1, indicates more randomness in the generated keys.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 215. Publication date: March 2025.

Michelle Lenker
Text Box
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 6. Publication date: March 2025.

Michelle Lenker
Text Box
MagKey      •       6:15



215:16 • Huang et al.

75

80

85

90

95

100

 BAR  

 BGR

B
A

R
 (

%
) B

G
R

 (bit/s)

Person index
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.4

0.6

0.8

1.0

1.2

Fig. 16. Overall performance.

Data collection.We recruit 30 volunteers (15 females and 15 males) between the ages of 21 and 53 with different
skin tones, weights, and heights (BMI ranging from 15.2 to 31.6) to participate in our experiments. During data
collection, the prototype devices will be individually attached to each participant’s wrist. Our test procedure
engrosses a 3-minute evaluation for each user conducted 6 times. The sampling rate is 500Hz.

4.3 Field Study
Overall performance. We evaluate the bit agreement rate and the bit generation rate of the key generation
process of 30 volunteers, as shown in Figure 16. MagKey performs well across all 30 participants, achieving an
average of 94.2% for the bit agreement rate and 0.96 bit/s for the bit generation rate.
Impact of gender and age. Next, we investigate the impact of age and gender on the performance of MagKey.
As illustrated in Figure 17a, MagKey remains robust across genders. Specifically, the bit agreement rate is 94.6%
for females and 94.0% for males. At the same time, the bit generation rate is 0.95 bit/s for females and 0.97 bit/s
for males. We then divide the 30 participants into four different groups to investigate the effect of age in detail.
As shown in Figure 17b, we observe that both the BAR and the BGR are higher in the 20-30 age and the 30-40 age
groups, at 95.5%, 94.5% and 0.96 bit/s, 1.01 bit/s, respectively, while the 50-60 age group showed relatively slightly
lower BAR and BGR at 93.4% and 0.92 bit/s, this trend can be attributed to the decreasing intensity and slowing
frequency of heart activity as individuals age.
Impact of BMI.We investigate the effect of different body mass indexes (BMI) on the performance of the MagKey.
BMI is a measure of body fat based on a person’s height and weight. We divide 30 participants into four groups:
underweight (BMI <18.5), healthy (BMI between 18.5-24.9), overweight (BMI between 25.0-29.9), and obese (BMI
>30.0). Figure 18a shows that the BAR of the four groups are 95.1%, 95.0%, 93.8%, 92.9%, and the BGR are 0.98
bit/s, 0.96 bit/s, 0.98 bit/s, 0.91 bit/s, respectively. MagKey’s BAR and BGR are relatively low for obese subjects.
This is because the blood vessels of obese subjects are located deeper from the skin surface. As a result, the pulse
caused by the heartbeats is attenuated when it reaches the skin surface, causing the skin to vibrate less.
Impact of skin tones.We investigate the impact of skin tone on the performance of the MagKey. Our main goal
is to assess the inclusivity of the MagKey for a specific study population, considering the sensitivity of the PPG
sensor to skin tone. We found that 14 out of 30 participants rated their skin tone between 1-3, 10 rated it between
4-6 and 6 rated it between 7-10. Although we have not yet covered the entire Monk scale, we believe our findings
will apply to a more diverse and broader population. Unlike the PPG sensor, which is sensitive to optical paths,
the MagKey is resilient to skin tone, as shown in Figure 18b. Across all three skin tone groups, the bit agreement
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Fig. 17. Magkey performance under different gender and age.
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Fig. 18. Magkey performance under different BMI and skin tones.

and bit generation rates for different skin tones are maintained in the range of 93.7% - 94.6% and 0.94 - 0.98 bit/s
range, demonstrating its inclusivity.
Impact of measuring position.We investigate the effects of two sensors placed on the same wrist, on the same
elbow, and on the left and right wrists of the same person to validate the robustness of the MagKey. Figure 19a
shows the bit agreement rate and the bit generation rate for all pairwise combinations. The bit agreement rate
is 94.2% when the two sensors are placed on the same wrist. Placing the sensors on the elbows results in a bit
agreement rate of 94.1% and a bit generation rate of 0.84 bit/s. Similarly, placing the two sensors on the left and
right wrists results in a bit agreement rate of 91.7% and a bit generation rate of 0.70 bit/s. Moving from the same
wrist to the left and right wrists, the MagKey’s bit agreement rate drops by 2.5%, but is still above 90%.
Impact of moisture levels.We investigate the impact of moisture levels on the performance of the MagKey.
We test the wrists of 15 volunteers at different humidity levels. As shown in Figure 19b, we find that the MagKey
adapts to different humidity levels. Going from dry to sweaty, MagKey’s bit agreement rate changes from 94.2%
to 92.3%, while the bit generation rate increases from 0.90 bit/s to 1.06 bit/s.
Impact of body hair. Next, we investigate the impact of body hair on the key generation using MFV signals on
the same wrist of the person, and Figure 20a shows the result. As the body hair gets thicker, the bit agreement
rate drops from 96.4% to 90.3%, while the bit generation rate remains at about 0.98bit/s. This is to be expected,
but still acceptable. Longer body hair makes it more difficult for the FPC and its magnet to sense skin vibrations.
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Fig. 20. Magkey performance under different body hair and tattoo.

However, the weight of the magnet brings the FPC closer to the skin. In addition, gel can also be used to make
the FPC adhere to the skin without causing discomfort.
Impact of tattoos.We investigate the impact of tattoos on the MagKey performance. Similar to the effect of
skin tone, tattoos can affect the propagation of optical signals. However, the MagKey is not affected by tattoos,
the BAR with and without tattoos is 94.5% and 94.1%, and the BGR with and without tattoos is 0.99 bit/s and 0.96
bit/s, as shown in Figure 20b.
Impact of peak screening and reconciliation method.We evaluate our peak screening algorithm and the
information reconciliation method. As discussed earlier, the peak-to-peak trends of Alice’s and Bob’s MFV signal
measurements cannot be accurately matched due to the effects of noise and sudden movement. Therefore, we
propose a peak screening method for initial screening, followed by information reconciliation to correct the
mismatched bits between the keys of the two devices. We present the bit agreement and bit generation rates
under various conditions consisting of four scenarios: Neither the peak screening nor the fuzzy commitment
is used, only peak screening is used without fuzzy commitment, only fuzzy commitment is used without peak
screening, and both peak screening and fuzzy commitment are used simultaneously.

Figure 21 presents the bit agreement rate and bit generation rate for all four cases. As can be seen from Figure
21, the bit agreement rate is only 77.6% and the bit generation rate is 0.96bit/s when peak screening and fuzzy
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Fig. 21. The effect of the screening and key reconciliation method.
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Fig. 22. Magkey performance under motion.

commitment are not used. On the other hand, when peak screening is used without fuzzy commitment technique,
the bit agreement rate increases to 82.5% while the bit generation rate is 0.84 bit/s because some bits are filtered by
the screening method. When the fuzzy commitment technique is used without peak screening, the bit agreement
rate increases further to 88.2%, but is still below 90% because the number of mismatched bits exceeds the error
correction capability of ECC. As a result, some of the mismatched bits between Alice and Bob cannot be corrected.
And the bit generation rate increases to 1.09 bit/s. Finally, when both peak screening and fuzzy commitment
technique are used, the bit agreement rate increases to 94.2%. On the other hand, the bit generation rate reaches
0.96bit/s.
Impact of motion. Key generation using motion signals has been studied extensively. However, it requires some
effort on the part of the user, which increases the burden on the user. A recent accelerometer-based estimation
from a large or population representative study suggests that adults spend about 8.2 hours per day sitting still
(range 4.9-11.9 hours/day) [44]. In addition, according to a recent survey, adults (≥ 18 years) reported a mean ± s.d.
time in bed of 7.8 ± 0.9h [45]. Our system works well for key generation when the person is stationary and
can be integrated with the accelerometers so that motion signals can be used to generate keys, and we conduct
experiments to demonstrate this. Most wearable devices are now equipped with accelerometers, and the potential
of accelerometers to capture motion signals and use them for key generation has been studied extensively. Our
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method uses heartbeat signals from the GMR sensor for key generation during stationary periods. When the
accelerometer detects wrist motion of the user wearing both the GMR sensor and the accelerometer, it switches
to motion mode. The key generation process is based on the magnitude of the acceleration signal, initiated upon
detecting wrist movement, as illustrated in Figure 22a. The magnitude of the acceleration signals is calculated by
Acc =

√︃
𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 , where 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are the values of the acceleration in the X, Y and Z directions in the triaxial

accelerometer, respectively. To generate the key, we first extract the acceleration signal from the first peak to
synchronize the two devices. The traditional guard band-based quantization method [46] is used for quantization,
and the combination of the index-based method [47] and the fuzzy commitment is used for reconciliation. We
evaluate the bit agreement rate and the bit generation rate of this approach, as shown in Figure 22b. The average
bit agreement rate is 99.6% and the average bit generation rate is 192.8 bit/s.
Impact of parameter 𝛼 . We investigate the impact of the threshold scaling factor 𝛼 on the performance of
MagKey. The result is shown in Figure 23. When peak screening is used, the bit agreement rate increases
from 96.1% to 96.4% as the threshold scaling factor 𝛼 in the peak screening algorithm increases, while the bit
generation rate decreases from 1.01bit/s to 0.88bit/s as the threshold scaling factor 𝛼 increases, as more potentially
mismatched bits are discarded. Additionally, to balance BAG and BGR, we choose 𝛼 = 0.2 in our setting based on
the result.

4.4 Randomness
In addition, we further test the randomness of all 128-bit keys after reconciliation using the popular NIST
statistical test suite [48]. The results of the tests are shown in the Table 2. The p-value in the table indicates
the probability that the data set was generated by a random process. If the p-value is less than 0.01, then the
assumption of randomness is rejected. All p-values are greater than 0.01, so the generated key sequence passes
the NIST randomness test. Next, we calculate the entropy of the generated keys, which is about 0.998. Therefore,
the MFV signal is suitable to be extracted as a cryptographic key.

4.5 Power Consumption
The power consumption of the MagKey consists of five components: the GMR sensor, the analog front-end
(which includes the voltage amplifier, filter, and voltage lifting circuit), the ADC, the MCU, and the reconciliation
process. We use the Rigol DP932A [49] to measure the power consumption of these main components. Table 3
summarizes the power consumption for each component of the MagKey.
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Table 2. NIST Test Results

NIST TEST p-value
Frequency 0.075363

Block Frequency 0.895171
Runs 0.180275

Longest Run 0.092219
Binary matrix rank 0.068101

DFT 0.043038
Non overlapping template matching 0.213689

Serial 0.592685
Cumulative sums 0.150727

Random Excursions 0.615498
Random Excursions Variant 0.087197

To accurately measure the power consumption of the MagKey implemented on the CC2650 LaunchPad, we
first establish a baseline by recording the power readings after the MCU’s startup. This baseline allows us to
subtract the initial power consumption from subsequent readings, enabling us to isolate and analyze the power
consumed specifically by the ADC and reconciliation processes.

The power consumed by the GMR sensor, analog front-end, ADC, MCU, and reconciliation is 3.63 mW, 34.98
mW, 2.64 mW, 0.033 mW, and 55.44 mW. Since the average bit generation rate of MagKey is about 1 bit/s, it takes
about 128 seconds to generate a 128-bit key, and the reconciliation process takes about 1.8 seconds, resulting in
a total power consumption of about 5.294 J to generate a 128-bit key. On the other hand, when the MagKey is
idle, it consumes only 0.033mW of power. Given a pair of AA batteries with a capacity of 8,140 mWh (i.e. 29,304
J), the MagKey can operate for up to 5,413 hours (approximately 7.5 months), assuming that key generation is
performed once an hour. However, it is important to note that the MagKey does not need to be active all the time,
as key generation is only required during the transfer of sensitive information.

Table 3. Power consumption of each component in MagKey.

Component GMR sensor Analog front-end ADC MCU Reconciliation Total
Power (mW) 3.63 34.98 2.64 0.033 55.44 N/A
Time (s)

(generation of a 128-bit key) 128 128 128 128 0.2 N/A
Energy (J) 0.464 4.477 0.338 0.004 0.011 5.294

5 THREAT MODEL AND PERFORMANCE ANALYSIS

5.1 Active Attacks
To illustrate a potential security breach, it is possible for an attacker to gain access to a user’s historical peak-
to-peak trend data. This can be done by Eve submitting a key that has been generated from the historical data
when attempting to pair with an authorized device. To combat this type of attack, the key generated by MagKey
ought to offer forward secrecy. To simulate this, we split each user’s data into two parts. The former part is the
historical data, which is used to pair with the latter. These two parts represent data measured by the same user at
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Fig. 24. BAR under different attacks.

different times. According to Figure 24a, the maximum bit agreement rate of 54.3% shows that the peak-to-peak
trends over time are quite random, confirming the security of MagKey against this type of attack.

5.2 Passive Attacks
The passive attacker, with knowledge of the key generation mechanism, is able to monitor the communication
between Alice and Bob. By eavesdropping on the key generation dialog, Eve attempts to pair authorized devices
with keys generated from her own MFV signal peak-to-peak data. To thwart this attack, MagKey must guarantee
that each user’s extracted key is unique. Next, we simulate this scenario by pairing devices placed on the same
part of the body between different people. When exchanging messages, Alice and Bob only exchange the indexes
of the samples. If an attacker tries to impersonate Alice to communicate with Bob, their samples can easily be
converted to different bits due to the difference in MFV signal data between Bob and the attacker. As shown in
Figure 24b, the highest bit agreement rate between the attacker and Bob is only 52.2%, which is much lower than
the bit agreement rate between legitimate users. It is difficult for the attacker to generate a key that matches the
legitimate user’s key.

6 RELATED WORK
We review research topics relevant to MagKey in this section.
Key generation method based on heartbeat signals. Heartbeat signals have great potential for use in authen-
tication and key generation schemes within Wireless Body Area Networks (WBAN) because heartbeat signals
carry unique characteristics of an individual, such as cardiac function information [50]. In addition, heartbeat
signals can be collected and analyzed by various sensors. Commonly used sensors include electrocardiography
(ECG) and photoplethysmography (PPG) sensors. ECG sensors collect the electrical activity of the heart muscle
through electrodes attached to the chest, providing information on heart rhythm and ECG waveforms, Rostami
et al. use ECG to acquire heartbeat signals and extract the four least significant bits of an inter-pulse interval
(IPI) for cryptographic device pairing [22]. Xu et al. use ECG to acquire heartbeat signals for key generation to
protect implantable medical devices [51]. The PPG sensor, on the other hand, can be placed on the ear, finger, etc.,
and detects heartbeat signals by irradiating body tissues and measuring changes in light absorption by blood in
microvessels [52], Zhang et al. use PPG to acquire heartbeat signals and extract a bit from the trend of an IPI
for key generation [6]. In addition, seismocardiography (SCG) enables the measurement of heartbeat signals
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by monitoring the response of the chest to cardiac systole and diastole. Wang et al. measure SCG signals for
authentication using a device equipped with an accelerometer sensor [53]. Heart rate variability (HRV) [54] and
inter-pulse intervals (IPIs) [8, 22] can be extracted from the heartbeat signals. These features can be used for
authentication and key generation. However, the aforementioned key generation and authentication methods
using heartbeat signals have inherent drawbacks, e.g. ECG requires complex electrodes, PPG is affected by body
fluids and skin tones, and SCGmeasurement may require wearing a strap on the chest, resulting in non-portability
or discomfort.
Key generation method based on channel information or body signals. Revadiga et al. utilize the fading
characteristics of the wireless channel between the two devices, i.e., the received signal strength indicator, to
extract the secret key [55]. Channel state information is also used for key generation [56]. Lee et al. present
an over-the-air device authentication scheme that leverages ambient electromagnetic radiation [57]. Wei et al.
propose a cross-sensor symmetric key generation system that collects inertial measurements from motion sensors
and acoustic measurements from microphones, respectively, and generates keys using inertial and acoustic
measurements [58]. Yan et al. use induced body electric potentials (iBEPs) for authentication [59], while Miao et
al. use skin electric potential (SEP) for key generation [5]. Zhao et al. capture common hand movements during
handshaking using accelerometers for secure pairing [60]. Pourbemany et al. propose the use of respiratory
inductive volumetric tracing and accelerometers for breath pairing, ensuring that the devices are part of the same
body area network [61].
GMR sensor applications. Researchers have come up with the idea of using biomagnetism as a way to monitor
human vital signs, mainly through GMR sensors that measure induced biomagnetic field signals. GMR sensors are
increasingly being used to monitor vital signs such as heart rate [26, 27], respiration [32], and blood pressure [62].
Bai et al. explore how to make the maximum coupling between magnetic flux and arterial blood in a magneto
plethysmo gram sensor head [34]. Lee et al. investigate the application of a Magneto-Plethysmographic sensor
to measure the velocity of peripheral blood flow. The results showed a strong correlation between the sensor
measurements and ultrasound Doppler measurements [63]. Guo et al. present a biomagnetism-based vital signs
monitoring system that can monitor the heart rate and respiration rate of users [35, 64].

Previous research has demonstrated the feasibility of using GMR sensors for vital signs monitoring, which is
essentially based on biomagnetic sensing. Differently, our study focuses on the utilization of MFV signals from
the GMR sensor for key generation.

7 DISCUSSION
Stationary setup.MagKey requires a stationary setup. It is important to note that this setup is a prerequisite
for utilizing the Ballistocardiography (BCG) signal and other signals generated by heart movements (e.g., SCG,
ECG). As a result, existing BCG-related studies typically collect data under resting conditions, such as lying
down, sitting, or standing still [28–31]. Moreover, it is important to highlight that heartbeat-based key generation
schemes are particularly fragile to motion artifacts [8, 23], as additional movement can easily affect the sensed
heartbeat signal. To address this issue, we propose to incorporate an accelerometer as a complementary device.
Errors in the resistance value of the GMR element.While variations in resistance occur due to hardware
imperfections in GMR sensors, once the sensor is produced, its resistance value becomes fixed under a specific
magnetic field. Our system utilizes the output variations of the GMR sensor to quantify and generate the key.
Additionally, among various factors, temperature has a greater impact on the resistance of the GMR [65], resulting
in changes in the output voltage. However, the Wheatstone bridge structure of the GMR sensor includes a
self-contained temperature compensation function. As a result, the output voltage change due to a temperature
change of 3◦C is less than 1 mV when the supply voltage is 3.3 V [39]. In contrast, the average voltage change
caused by skin surface displacement due to the heartbeat is about ±30 mV.
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Given that we rely on the trend of the peak-to-peak values of adjacent heartbeats to generate keys, and
considering that the average duration of a heartbeat interval is around 0.8 s, if the GMR sensor experiences a
temperature change of ±3°C within this timeframe, the resultant change in peak-to-peak value would be about ±1
mV. Importantly, in typical usage scenarios where the device is worn on the body, extreme temperature changes
within such short timeframes are unlikely. Even if the GMR sensor were to experience a significant temperature
difference within such short timeframes, calculations indicate that our system would only record a misjudgment
at a lower threshold 𝑇ℎ1 of 0.3 if the temperature difference experienced by the GMR exceeds 60°C within 0.8 s.
Our GMR sensors are typically placed on the skin’s surface, where the normal temperature range is nar-

row—generally between 36.6◦C and 37.2◦C, even sweating and exercise or having a fever will cause only a small
temperature change of less than 3◦C due to thermoregulation [66], so the output voltage change of the GMR
sensor caused by temperature change is negligible. Finally, our peak-to-peak screening can further mitigate any
influence of temperature variations by filtering out peaks with variations below the lower threshold 𝑇ℎ1.
Therefore, we believe that both manufacturing imperfections and temperature variations have a negligible

impact on the performance of the system.
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Improving the BGR and BAR. To improve the BAR and BGR, we employ a compressed sensing-based reconcili-
ation method in the key generation process, a technique widely utilized in key reconciliation processes [8, 46, 67].
We replace the reconciliation method from fuzzy commitment-based reconciliation to compressed sensing-based
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reconciliation, everything else remains the same. The compressed sensing-based reconciliation process is shown
in Fig. 25. We evaluate the bit agreement rate and the bit generation rate of the key generation process of
30 volunteers, as shown in Figure 26. MagKey performed well across all 30 participants, with an average bit
agreement rate of 98.2% (a 4% improvement compared to 94.2% with fuzzy commitment) and an average bit
generation rate of 1.0 bits/s (a 0.04 bit/s improvement compared to 0.96 bit/s with fuzzy commitment).

8 CONCLUSION
In this study, we introduce MagKey, a pioneering endeavor aimed at exploring the viability of BCG-based key
generation for wearable devices. MagKey addresses the challenges associated with effective BCG sensing by
innovatively converting skin vibration resulting from recoil forces into magnetic field vibration (MFV). Our
research underscores that the peak-to-peak trend (PPT) of MFV signals serves as a dependable source for key
extraction, thereby enhancing the key generation rate. To counteract the influence of noise and motion artifacts
on key generation, MagKey devises a robust signal processing pipeline. We implement a prototype of MagKey
and conduct comprehensive experiments to assess its performance across diverse scenarios. Additionally, we
conduct thorough security analyses to validate MagKey’s resilience against various potential attacks. Through
these efforts, MagKey not only advances the frontier of BCG-based key generation, but also lays a foundation for
secure and efficient wearable device pairing.
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