

Limited Warranty and Liability

Information in this document is believed to be accurate and reliable. However, NVE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including, without limitation, lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Right to Make Changes

NVE reserves the right to make changes to information published in this document including, without limitation, specifications and product descriptions at any time and without notice.

Use in Life-Critical or Safety-Critical Applications

Unless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and such inclusion or use is at the customer's own risk. Should the customer use NVE products for such application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless against all claims and damages.

Applications

Applications described in this document are illustrative only. NVE makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NVE products, and NVE accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NVE product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NVE does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's applications and products in order to avoid a default of the applications and the products or of the application or use by customer's third party customers. NVE accepts no liability in this respect.

An ISO 9001 Certified Company

NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617

©NVE Corporation All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Manual No.: SB-00-132

AG965-07E AET500 Micron Precision Demonstration

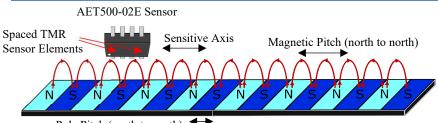
SB-00-132

NVE Corporation • (800) 467-7141 • sensor-apps@nve.com • www.nve.com

Overview

The demonstration includes:

- AET500-02E five-mm pole pitch TMR Linear Sensor ٠
- NVE part number 12592, five-mm pitch magnetic tape, and fixturing .
- Low-cost dual op-amp and microcontroller interface .
- Four-digit LED micron display
- LEDs for pole detected and field strength intensity indicator ٠
- Sensor test points and screw terminals .
- 3" (76 mm) x 5" (127 mm) printed circuit board .
- Three AAA batteries to power the board


AET500-02E Features:

- 200 mVpp/V typical max output
- 20 mVpp/V max offset ٠
- High Accuracy: 1% max hysteresis / 1% typical linearity ٠
- 350 kHz magnetic bandwidth
- -50 °C to 150 °C
- Compact SOIC8 package ٠

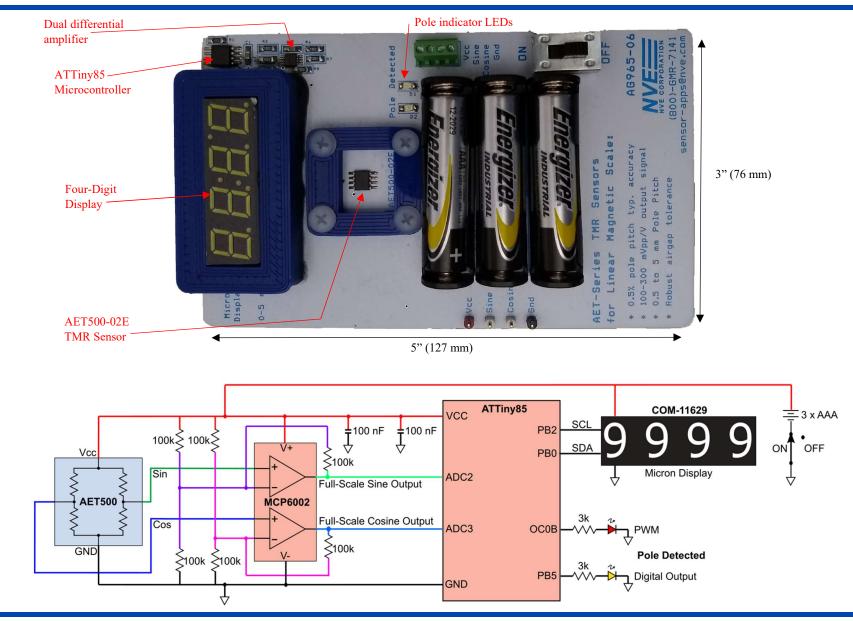
Quick Start

- \rightarrow Turn on the power
- → Slide the magnetic tape through the mounting fixture
- \rightarrow Observe the micron position on the display, from zero to 9999.

Magnetic Operation

Pole Pitch (north to south)

The AET500 is a linear sensor that detects the periodic magnetic fields produced by alternating magnetic poles. The sensor is single-axis sensitive, and its spaced TMR elements are optimized for five-mm pole pitch.

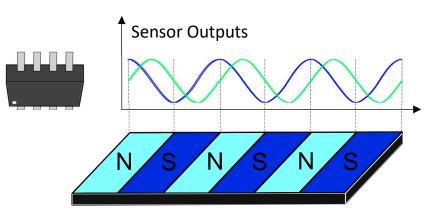

Reference Manufacturer Part Number Description SENSOR TMR N/A **NVE** Corporation AET500-02E LINEAR 8SOIC Microchip IC MCU 8BIT 8KB ATTiny85 Technology FLASH 8SOIC Microchip IC OPAMP GP 2 MCP6002 Technology CIRCUIT 8MSOP RES SMD 3K OHM R1, R2 N/A Generic 1% 1/8W 1206 RES SMD 100K R3, R4, R5, N/A Generic R6, R7, R8 OHM 1% 1/8W 1206 CAP CER 0.1UF C1, C2 N/A Generic 50V X7R 0805 APT3216LSECK/J3-LED CLEAR CHIP D1, D2 Kingbright PRV 2SMD

	Keystone Electronics	500x	PC TEST POINT MINI
	TE Connectivity	282834-2	TERM BLK 2P SIDE ENT 2.54M M
	CW Industries	GF-124-0196	SWITCH SLIDE SPDT 500MA 125V
	Keystone Electronics	2466	BATTERY HOLDER AAA PC PIN
	Energizer Battery Company	EN92	BATTERY ALKALINE 1.5V AAA
N/A	NVE Corporation	12592	MAG SCALE 5MM PITCH
NVE 3D-printed fixturing for magnetic tape and bezel mount for display			

Bill of Materials

U1

U2



Demonstration Board Layout (Actual Size) and Schematic

Microcontroller Firmware

The firmware is simple. We read the sine and cosine si scaling 360° to 10,000 microns, and update the I2C dis accuracy, offset compensation can be added.	•				
finclude <math.h> // needed for atan2</math.h>					
<pre>include (mitch: // Arduino library for I2C const byte s7sAddress = 0x71; //define micron display I2C ad char tempString[10]; // Will be used with sprintf to create int sine=1; // initialised to 1 to avoid 0/0 int cosine=1; int angle=1;</pre>		t value)			
<pre>void setup()</pre>					
pinMode (5, OUTPUT);					
Wire.begin(); // Initialize hardware I2C pins					
clearDisplayI2C(); // Clears display, resets cursor					
<pre>pinMode(1,OUTPUT);</pre>					
3					
void loop()					
(
<pre>sine = analogRead(A2)-512;</pre>					
cosine = analogRead (A3) -512;					
angle = atan2(sine, cosine)*180/3.14159*10000/360+5000; //	"angle": 0 to	9999 microns			
angle = (int) angle; //atan2 casts to double, will cause issues with analogWrite if not int					
if(angle>9998) // prevent overflow					
angle=9999;					
if(angle<1)					
angle=0;					
if(angle>9980 angle <20 (angle>4480 66 angle<5020))	// turn on LF	D every 5 mm for			
digitalWrite (5, HIGH); "pole detected"					
else	pole detect				
<pre>digitalWrite(5,LOW);</pre>					
<pre>sprintf(tempString, "%4d", angle); //create string for dis</pre>	play (%4d opt	ion creates a 4-digit integer)			
s7sSendStringI2C(tempString); //display the string	PD /	last see to			
if (angle<5000) // associate angle with pole location for L	ED indicator	// Linear LED brightness vs.			
angle=abs(angle-2500)*255/2500; if(angle>4999)		proximity to a pole (every 5			
angle=abs(angle-7500)*255/2500;	mm)				
analog%rite(1, angle);					
}					
void s7sSendStringI2C(String toSend) // sends a string to di	mlay by taki	ng first 4 characters			
{	-pany -j -an				
Wire.beginTransmission(s7sAddress);					
for (int i=0; i<4; i++)					
Wire.write(toSend[i]);					
Wire.endTransmission();					
3					
void clearDisplayI2C() // This will clear the display and reset the cursor					
(
Wire.beginTransmission(s7sAddress);					
Wire.write(0x76); // Clear display command					
Wire.endTransmission();					

Because the TMR sensor elements are bipolar, the sensor's sine and cosine outputs are periodic with the "magnetic pitch," rather than the manufacturer-specified "pole pitch," as shown below:

In this demonstration, the sensor detects a zero to 9999 micron distance, corresponding to the 10 mm north-to-north "magnetic pitch" of the five-mm "pole pitch" magnetic tape. For more information about AET-Series operation, read the datasheet and visit the sensor applications page:

www.nve.com/Downloads/AET-Series-Datasheet.pdf

www.nve.com/SensorApps.php