Limited Warranty and Liability
Information in this document is believed to be accurate and reliable. However, NVE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including, without limitation, lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Right to Make Changes
NVE reserves the right to make changes to information published in this document including, without limitation, specifications and product descriptions at any time and without notice.

Use in Life-Critical or Safety-Critical Applications
Unless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and such inclusion or use is at the customer’s own risk. Should the customer use NVE products for such application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless against all claims and damages.

Applications
Applications described in this document are illustrative only. NVE makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NVE products, and NVE accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NVE product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NVE does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customers. The customer is responsible for all necessary testing for the customer’s applications and products using NVE products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customers. NVE accepts no liability in this respect.

An ISO 9001 Certified Company
NVE Corporation
11409 Valley View Road
Eden Prairie, MN 55344-3617

©NVE Corporation
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
Overview

This Evaluation Board Includes

- Three AAL024-10ETDFN current sensors
- 1.565" x 2.915" (40 mm by 74 mm), 0.062" (1.6 mm) thick PCB
- Three current measurement configurations
- Sturdy screw connections for high current
- Up to 65 amps AC or DC noncontact current measurement

AAL024-10E Features

- Wheatstone bridge analog outputs
- High sensitivity: 3.6 mV/V/Oe typical
- Wide linear range: 1.5 to 10.5 Oe; 15 Oe saturation
- 2.2 kΩ bridge resistance/1.1 kΩ output impedance for easy interface
- Low offset: 4 mV/V max.
- Low hysteresis: 2% max. for excellent repeatability
- Wide bandwidth: 500 kHz
- −50 to 125°C
- Ultraminiature 2.5 mm x 2.5 mm TDFN6 package

Advantages of Sensing Current Over Trace

- Negligible insertion resistance
- Usable for a wide current range
- Inherent electrical isolation
- AC or DC operation

Additional Resources

- Buy Online: www.nve.com/webstore/catalog

Sensors Details

Omnipolar Response

AA-Series sensors are “omnipolar,” meaning the output voltage is positive for either field polarity. This produces an output analogous to half-wave rectification of the current being sensed, eliminating the need for rectification of AC inputs.

Bridge Offset

The sensors have a maximum offset of ±4 mV/V. This can be trimmed out with an external resistor if necessary.

Temperature Compensation

The Wheatstone bridge inherently compensates for temperature changes, but there is still some residual temperature coefficient. A constant-current rather than constant-voltage power supply reduces the temperature coefficient of the output considerably. The sensors can also be externally temperature compensated if necessary.

Ampere’s Law

For narrow traces, the magnetic field generated can be approximated by Ampere’s law:

\[B = \frac{2I}{d} \]
[“B” in Gauss, “I” in amps, and “d” in millimeters]

A more accurate calculation can be made by breaking the trace into a finite-element array of thin traces, and calculating the field from each array element.

We have a free, Web-based application with a finite-element model to estimate magnetic fields and sensor outputs in this application: www.nve.com/spec/calculators.php#tabs-Current-Sensing
The evaluation board demonstrates three current-trace configurations:

A. Single trace on top side of PCB
 This configuration will saturate the sensor at about seven amps. The 0.05-inch (1.25mm) wide, one-ounce trace can carry up to seven amps, coinciding with sensor saturation.

B. Five turns on top side of PCB
 Five traces provide approximately five times the field, but they must be narrower to fit under the sensor. The 0.0055-inch (0.14mm), one-ounce copper traces have a maximum current of approximately one amp.

C. Heavy, wide trace on bottom of PCB
 This is the highest-current configuration, with a one-inch (25mm) wide trace of one-ounce (35μm thick) copper that can carry up to 50 amps with a 50°C temperature rise, which coincides with the sensor saturation. Using a wide trace on the opposite side of the board from the sensor allows large currents to be detected without overheating the board trace or the sensor.

Typical characteristics of the three configurations are summarized in the following table:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Typical Sensitivity</th>
<th>Linear Range</th>
<th>Sensor Saturation</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Trace on top of PCB</td>
<td>8.6 mV/V/A</td>
<td>0 – 4.5 A</td>
<td>7 A</td>
<td>>300V</td>
</tr>
<tr>
<td>B. 5 turns on top of PCB</td>
<td>43 mV/V/A</td>
<td>0 – 0.75 A</td>
<td>1 A</td>
<td>>300V</td>
</tr>
<tr>
<td>C. Wide trace under PCB</td>
<td>0.9 mV/V/A</td>
<td>0 – 50 A</td>
<td>55 A</td>
<td>>6 kV</td>
</tr>
</tbody>
</table>
AAL024-10E Magnetometer Sensors (3 places)

Configuration B: 5 turns of 0.0055"-wide, 1 oz copper traces on top of PCB

Configuration A: 0.05"-wide, 1 oz copper trace on top side of PCB

Configuration C: 1"-wide, 1 oz copper trace on bottom-side of PCB

Sensor Power (0 - 12 V) (3 places)

Sensor Differential Outputs (45 mV/V full-scale; 540 mV full-scale at 12V; 3 places)

Connections for Current to Be Sensed

Current to Be Sensed