Address line-assisted switching of vertical magnetoresistive random access memory (VMRAM) cells

John M. Anderson and David J. Brownell
NVE Corporation
Gary A. Prinz, Harold Huggins, Luan V. Van, and Joseph A. Christodoulides
Naval Research Laboratory
Jian-Gang Zhu
Carnegie-Mellon University
Presentation Outline

- VMRAM Overview
- VMRAM Technology
 - Bits and Sense Lines
 - MR Response
 - Reading and Writing
 - Arrays w/ Address Lines
- Test and Analysis
- IC Prototype
- VMRAM vs. Hard Disk Drive
- Conclusion
VMRAM Overview

- VMRAM = Vertical Magnetoresistive Random Access Memory
- Devised and developed by researchers at NRL and CMU
 - NRL: Dr. Gary Prinz1,2,3, Dr. Konrad Bussmann2
 - CMU: Dr. Jian-Gang Zhu1
- VMRAM cells consist of toroid-shaped elements that have a stable closed-flux magnetic configuration
- Employs current perpendicular to the plane (CPP) to switch soft (read) and hard (write) magnetic layers of a GMR multilayer
- Address (word) lines generate radial torque fields that assist switching
- Teams from NVE Corp. and NRL have developed processes to fabricate 64-bit strings of 0.6μm O.D./0.2μm I.D. cells with address lines
- VMRAM is a high-density, non-volatile memory theoretically scaleable to 400Gbits/in2 at $\lambda = 10$nm1 and has the potential to compete with both semiconductor memories and mechanical hard disks.

3G. Prinz, U.S. Patent No. 5477482
VMRAM Technology – Bits and Sense Lines

- 2000Å CMP’d Cu
- 40Å Ta phase breaking layer
- Multilayer stacks: \([\text{NiFeCo (20Å)/Cu (40Å)/NiFeCo (40Å)/Cu (40Å)}] \times 5\)
- 2000Å Cu connects cells such that current flows vertically
- Test arrays consist of 256 bits in 4x64-bit strings
VMRAM Technology – MR Response

- Response shape is similar to pseudo-spin valve
- Thicker (hard) layers act as storage mechanisms
- Thinner (soft) layers act as read mechanisms
- Simulated Response
 - Soft layers switch ~15 mA
 - Hard layers switch 40 – 55 mA
- Address line current effectively reduces switch thresholds
VMRAM Technology – Writing/Reading

Writing

Engage address current
Write from "1" to "0"

Reading

Soft layer minor loop

Engage address current
\[v = i \Delta r \]
VMRAM Technology – Array w/ Address Lines

- Serpentine arrangement yields orthogonal upper/lower address lines
- Address current generates an outward radial word field for the current direction shown
- 4x64 arrays (4x8 section shown)
 - 4 sense lines run vertically
 - Address lines run horizontally
- 2-D selection
- Top and bottom address line segments connect through vias
- VMRAM cells reside at the junctions – 32 cells shown
Test and Analysis – General Test Procedure

- Run bipolar sense current sweep to determine switch thresholds (+/- I_{th})
- Establish reference by saturating bits with $+I_{th}$ mA and sweeping the sense line with the same polarity current
- Saturate sense line with $< |-I_{th}|$ mA and I_{addr} mA
- Sweep sense current from $+I_{small}$ mA to $+I_{th}$ mA
- Read voltage at each sense current step:
 - Sample voltage
 - Assert address current
 - Sample voltage
- Generate MR transfer curve
- Scale data by subtracting out reference curve
Test and Analysis – MR Response

- Observations:
 - GMR <1% vs. 10%-20%
 - Smooth transitions for hard and soft layers vs. abrupt switching

- Suspected cause: magnetic material redeposition
 - couples the stack layers
 - limits antiparallel alignment between hard/soft layers
 - and/or, significantly reduces the number of “active” layers
Test and Analysis – Read Layer

Soft Layer Switching (10 bits)

$I_w = 10mA$

Normalized PR

Sense Current (mA)

@ 4mA
@ 3mA
@ 2mA
Hard Layer Switching (10 bits)

$I_w = 11mA$

Normalized τR

Sense Current (mA)

@ 11mA
@ 12mA
@ 13mA
@ 14mA
@ 15mA
@ 16mA
Test and Analysis – Switching Asteroid

- Soft layer operating point
 - $I_{\text{sense}} = 6\text{mA}$
 - $I_{\text{addr}} = 5\text{mA}$

- Hard layer operating point
 - $I_{\text{sense}} = 12\text{mA}$
 - $I_{\text{addr}} = 10\text{mA}$

- Experimental data tends toward simulated $10\text{Å}/30\text{Å}$ combination

VMRAM Switching Asteroid

Experimental vs. Simulated

![Graph showing experimental vs. simulated data for VMRAM switching asteroid.](image)
VMRAM 2K IC Prototype Design

- Bonding pads
- Control logic
- 2 - 4x256 VMRAM arrays
- Decoder circuitry
- Sense amplifier
VMRAM vs. HDD (Projected)

- VMRAM Density at $\lambda = 0.01\mu m$ node
 - Best case: $16\lambda^2 = 403$ Gbits/in2
 - Worst case: $18.77\lambda^2 = 358$ Gbits/in2

- VMRAM compared to a 147GB HDD*
 - $\lambda = 0.09\mu m$ node
 - 9mm x 9mm PLCC package can hold 270 – 305Mb
 - HDD* FF \Rightarrow 4” x 5.78” x 1.03”
 - Same sized VMRAM memory module yields 65 – 75GB
 - A VMRAM memory module built today could have \sim50% the capacity of today’s HDD
 - At $\lambda = 0.08\mu m$ (ITRS projection for 2005) capacity is \sim65%

- VMRAM has no mechanical wearout
- Smaller, rugged, more versatile form factor

*Maxtor Atlas0 15K II
Conclusion

- Four by sixty-four bit VMRAM test arrays were successfully fabricated using address lines designed for 2-D selection.
- Address-assisted switching of VMRAM cells was demonstrated
 - Soft layer switching: $I_{\text{sense}} = 6\, \text{mA}$, $I_{\text{addr.}} = 5\, \text{mA}$
 - Hard layer switching: $I_{\text{sense}} = 12\, \text{mA}$, $I_{\text{addr.}} = 10\, \text{mA}$
- Edge pinning in the GMR stack due to magnetic material redeposition led to low signal response and smooth transitions in unassisted MR response.
- GMR multilayer optimization is needed in order to maximize signal and ensure "singular" switching thresholds for stack magnetic layers.
- Integrated 2K VMRAM prototype design has been completed for a 0.35µm gate length semiconductor process.
- Hard and soft layer switching asteroids generated from experimental data compare well with micromagnetic simulations.

* NVE Corporation thanks the Office of Naval Research and the Naval Research Laboratory for their continued support and collaboration